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Abstract—Reward functions define an agent’s behavior in rein-
forcement learning by determining actions based on the feedback
received. In the domain of path following, reward functions guide
the agent toward successfully following the desired path. This
paper presents a survey of reward functions focused on path-
following tasks for mobile robots. The characteristics, strategies,
and challenges associated with creating feedback mechanisms
in various domains are highlighted. Components of the reward
functions that can be controlled are explored and discussed.
Furthermore, for each reward function, scenarios and mobile
robots are indicated. Thus, this study provides insights into the
reward components that influence reinforcement learning systems
in robotic navigation.

Index Terms—Reinforcement Learning, Reward Design, Mo-
tion Control, Autonomous Robots.

I. INTRODUCTION

In recent years, autonomous robots have become increas-
ingly prevalent in both everyday life and industrial applica-
tions [9], [10]. From self-driving vehicles [17] and mobile
robots in warehouses to drones for delivery [13], these tech-
nologies are shaping the future of transportation, industrial
automation, and various other sectors [33].

These advancements allow robots to make decisions in
several environments [2], [18], [24]. The integration of Arti-
ficial Intelligence (AI) technologies, such as Deep Learning
(DL) and Reinforcement Learning (RL), has enhanced the
capabilities of mobile robots, enabling them to perceive and
navigate in real time [14], [16]. RL involves training agents to
make sequential decisions by maximizing cumulative rewards
through interactions with their environment [12], [15]. An
important aspect of RL applied to autonomous systems is the
design of reward functions. These functions guide the agent’s
learning process by assigning positive or negative feedback
based on the actions taken [6], [8]. However, the challenge
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lies in defining appropriate reward functions that represent the
desired behavior while avoiding unintended consequences.

There is a considerable amount of literature on reward
function design for general applications, offering insights into
how to create effective reward functions and what factors to
consider in the process [8], [11], [23], [27]. These articles dis-
cuss various aspects, including the trade-offs between different
types of rewards, the challenges in designing rewards that en-
courage desirable behaviors, and the need to avoid unintended
consequences. More specifically, the review [1] focuses on
what is relevant in reward functions for autonomous vehicles.
Furthermore, it discusses the factors to consider when design-
ing reward functions, such as safety, comfort, progress, and
compliance with traffic rules. Thus, the review examines how
the literature addresses these reward components, highlighting
their strengths, limitations, and challenges in reward function
design, including the aggregation of conflicting objectives and
the lack of contextual awareness in some formulations.

However, there is a noticeable lack of comprehensive re-
views or surveys that focus on reward functions within specific
domains. For this survey, the objective is to identify articles
related to the application of RL to autonomous navigation,
specifically focusing on the reward functions used in the
RL algorithms for path-following tasks [7] (Figure 1). The
systematic search was based on the following Boolean opera-
tors in the source Google Scholar: (”reinforcement learning”)
AND (”path” OR ”trajectory” OR ”trajectories”) AND

(”tracking” OR ”following”) published in the last ten years.
The main contributions of this paper are as follows:

• an overview of reward function strategies aimed at guid-
ing the design of reward for mobile robot path-following
control;

• a standardization of reward functions commonly em-
ployed in path-following tasks, with a focus on key com-
ponents such as classical terms, progress-based distance,
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Fig. 1. Main key-words for this work and its connections

acceleration penalties, lateral deviation, steering control,
angular deviation, and velocity regulation;

• a summary of characteristics, practical contexts, domain
of applications, and challenges of reward functions.

The paper is organized as follows: Section II, which presents
the categories and equations of the reward functions. In Sec-
tion III, the challenges and applications of the reward functions
are presented. Finally, Section IV shows the importance and
justification of this review. Appendix A includes the equations
used to better understand the reward functions.

II. REWARD FUNCTIONS FOR PATH FOLLOWING

The reward functions can be of various types based on
the specific components of the agent’s behavior they aim to
control. In this section, we examine several reward functions
commonly used in path-following. Each function considers
different mobile robots, scenarios, applications, features, ad-
vantages, and limitations (see Table I).

A. Classic Rewards (CR)

In several situations, agents should receive feedback for
simple actions, such as when they complete a task or encounter
a specific event. The classic reward rc for reaching the goal
is defined by [3], [19]:

Rc = kc1 . (1)

In other words, assign positive feedback when the agent
reaches a waypoint. Otherwise, the robot may receive penal-
ties, such as [3]:

Rc = −kc2 . (2)

In this case, the function rc applies negative feedback when
the agent crashes or fails in some way.

B. Progress-based Reward (PR)

This component of the reward functions aims to encourage
the agent to progress along the desired path or toward specific
way-points. The agent’s progress py can be quantified by

calculating the variation in distance (14). The corresponding
progress reward function Rp is computed using the distance
variation and a scaling coefficient kp, as expressed [3], [19]:

Rp = kp × py. (3)

When the agent advances along the path, the reward is
positive. In contrast, when the agent moves backwards, the
reward becomes negative or decreases, motivating the agent
to stay on course.

C. Acceleration-based Reward (AR)

The acceleration reward function Ra penalizes rapid
changes in acceleration, encouraging the agent to avoid sudden
jerks or oscillations in its movement as follows [31]:

Ra = −ka × ay. (4)

The term ay represents the lateral acceleration of the agent
along the path. The constant ka controls the magnitude of
the penalty for rapid acceleration changes. A negative value
of Ra is assigned when the agent accelerates, with a higher
penalty for faster acceleration rates, discouraging sudden or
jerky movements.

D. Lateral error-based Reward (LER)

The lateral error ey quantifies the agent’s deviation from the
reference path ((17), (18) and (19). By penalizing large lateral
errors, this reward function encourages the agent to stay as
close as possible to the desired path. The lateral error reward
function Re is of the form [25], [34]:

Re = e−key |ey| (5)

utilizes a Gaussian function, providing smooth and differen-
tiable penalties, which are advantageous for gradient-based
optimization. This design reinforces the need for the agent
to minimize deviations from the desired path. Another reward
function Re, that also provides a Gaussian reward based on
the lateral error ey is [4], [21], [22]:

Re =

{
keye

−
e2y
2σ if |ψ̃| < π

2 ,

0 otherwise.
(6)

The reward is highest when the error is small and decreases
exponentially as the lateral error increases. However, the key
difference in this approach lies in the added condition based
on the yaw error ψ̃, which represents the difference between
the robot’s yaw angle (15) and the path heading. Suppose
that the yaw error |ψ̃| < π/2. In this case, the reward given
ensures that the agent is rewarded for staying close to the path
while considering the agent’s orientation relative to the goal.
However, if the yaw error is greater than π/2, the reward is
set to zero, penalizing the agent for deviating too far from the
ideal path in terms of both lateral error and orientation.

Additionally, the difference lies in the 2σ term. The original
equation uses σ = 10 m, chosen based on the scale of the
navigation task. For agents operating in large environments,
this value of σ is appropriate, as it provides the agent with
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an acceptable error margin of up to 10 meters before being
significantly penalized. An alternative approach to measuring
the reward for cross-track error is the following equation [30]:

Re = −key |ey|, (7)

which uses a linear reward function instead of the Gaussian
function. This equation provides a constant reward propor-
tional to the magnitude of the error, without the smooth
exponential decay characteristic of the Gaussian function. The
fourth approach in this category is based on the average
tracking error ēy over a certain period or set of samples, as
shown [31]:

Re = −key |ēy|. (8)

Then, this method smooths out the reward function over time,
making it less sensitive to short-term fluctuations.

E. Steering Control-based Reward (SCR)

This category penalizes abrupt or rapid steering changes,
which can lead to instability or erratic behavior. The first
approach is the standard deviation reward function Rs in
(9). This function is based on the most recent N steering
command values, calculated using (20). Designed to penalize
rapid, oscillatory, or chattering behavior in steering control.
The reward function is an exponential Gaussian function of
the form [34]:

Rs = e−kσδ
σδ . (9)

An alternative approach is to calculate the reward based on
the change in the steering rate Rs, as shown [21], [22]:

Rs = −kδ|δ̇| (10a)

Rs = −kδ̇ δ̇2. (10b)

These rewards are derived from the steering angle change
rate δ̇ = d(δ(t))

dt for δ(t) the steering angle at time t. The
function Rs is used to penalize excessive changes in the
steering angle. For a linear approach in this category, (10a)
is used. Furthermore, in (10b), the term kδ̇ is a constant
that determines the magnitude of the reward applied to rapid
changes in steering rate. To make the system more sensitive
to rapid steering adjustments, the square derivative is used to
amplify the penalty. In this equation, rewards are calculated
based on the steering change rate, making the system easily
adaptable to other data, such as angular velocity, linear veloc-
ity, or another metric that helps prevent abrupt changes and
encourages smoother motion.

F. Angle Deviation-based Reward (ADR)

Angle deviation rewards Rd are designed to control the
agent’s heading and orientation along the path. These rewards
penalize the difference between the agent’s current heading
and the desired direction of travel. Thus, in path following,
the agent must maintain a consistent orientation along the
path, especially in environments where precise control over

direction is necessary. One common approach is the use of
angle deviation reward, as follows [34]:

Rd =


e−kθr |θr| if |θr| < 90◦,

−e−kθr (θr−180) if θr ≥ 90◦,

−e−kθr (θr+180) if θr ≤ −90◦.

(11)

This function penalizes deviations in the agent’s heading
relative to the desired path direction. In (11), θr represents the
angle deviation. In other words, θr is the difference between
the agent’s current direction and the desired path direction.
The coefficient kθr is the scaling factor that adjusts the penalty
for the deviation from the reference value. Furthermore, the
function provides an exponential decay in the reward as the an-
gle deviation increases, with different behavior for deviations
within and beyond 90◦.

G. Velocity-based Reward (VR)

In certain applications, when agents are constrained by
time or need to complete tasks efficiently, encouraging higher
speeds is crucial. To promote it, the reward function for
velocity is defined [19]:

Rv = kvv, (12)

which is based on the agent velocity v and on the coefficient
factor kv that adjusts the magnitude of the reward. An alterna-
tive approach in this category, which involves using velocity
to calculate progress, is represented by [30]:

Rv = kvvT , (13)

whose basis is the projected velocity onto the x-axis of the
tangential frame of reference vT (see (16)). The velocity
reward function Rv provides a positive reward when the agent
is moving forward along the path and a negative reward when
it moves in the opposite direction based on its velocity.

III. CHALLENGES OF REWARD DESIGN IN DIFFERENT
DOMAINS

The main challenge in designing reward functions for path
following is ensuring that the reward correctly guides the
agent along the desired path. However, there are different
challenges for each applied environment; a summary of this
context is given in Figure 2. When multiple components
are considered as distance error, angle deviation, travel time,
velocity, acceleration, stability, and smoothness of movements,
a function that best fits the domain [5], [29] (see Table I).

In maritime environments, Autonomous Underwater Ve-
hicles (AUVs) [26], [35] and Unmanned Surface Vehicles
(USVs) [28], [36] have more flexibility in path following, as
these environments typically present minimal collision risks
[20]. In contrast to urban or high-density areas, maritime and
aerial environments often have fewer obstacles, allowing these
vehicles to deviate from the ideal path without significantly
impacting overall performance or safety. This increased free-
dom of movement reduces the need to maintain a low lateral
path error, as the potential for collisions or other hazards is
minimal.



However, both maritime and aerial environments pose spe-
cific challenges. In maritime scenarios, the environment is
often featureless and homogeneous, which can hinder precise
localization due to the lack of visual or geometric landmarks.
Additionally, water currents and wave dynamics introduce
slow but persistent disturbances. In aerial environments, while
similarly sparse in obstacles, vehicles are operated in three-
dimensional space. This added degree of freedom, along with
susceptibility to fast-changing disturbances such as wind and
turbulence. As a result, reward functions in these environments
can prioritize other actions while ensuring deviations from the
path do not compromise mission objectives.

In the autonomous driving domain [32], maintaining a
path following with a low lateral error is relevant, as even
slight deviations can lead to safety issues, especially in urban
settings where there is a need to account for obstacles such as
pedestrians, other vehicles, and traffic signals. Autonomous
vehicles are typically required to stay within narrow lanes
and follow specific routes. As such, path-following reward
functions in this domain often emphasize minimizing lateral
error and ensuring the vehicle’s velocity and angular velocity
are adjusted smoothly to avoid abrupt changes that could
compromise passenger comfort or vehicle stability [19].

In warehouse navigation and automated material handling
within logistics environments, vehicles or robots often operate
in structured settings with predefined paths, surrounded by
restricted areas dictated by industry norms. These areas are
designated for robots, people, or specific operations, such
as narrow corridors filled with shelves. These systems must
minimize lateral error and ensure smooth path adjustments
without prioritizing passenger comfort. However, they must
still avoid abrupt changes in velocity and steering. The pres-
ence of narrow corridors adds a layer of complexity, requiring
careful navigation to prevent collisions with shelves, obstacles,
and people. In minimizing task duration, the agent must
reach the target location quickly while avoiding collisions.
Reward functions in this domain typically account for factors
such as time to destination, travel distance, and the number
of obstacles encountered while allowing some flexibility in
the path following, provided that deviations remain within
acceptable limits.

IV. CONCLUSIONS

The proper definition and adaptation of reward functions
play an important role in reinforcement learning, providing
feedback that shapes the agent’s behavior and actions. While
RL is an emerging technology with widespread applications,
the literature on reward function surveys remains limited. The
lack of review studies is particularly noticeable when focused
on specifically path-following tasks. These gaps highlight
the need for further research on the various approaches and
challenges associated with reward functions in this domain.
Given this, the current paper presents foundational reward
functions. These equations have been adapted for better under-
standing and applicability to different categories and scenarios.
Thus, the paper contributes to the review of reward functions,

Fig. 2. Summarized challenges for each environment.

particularly in the domain of path-following tasks that utilize
the RL method. Based on the insights gained from this work,
future research can focus on developing a taxonomy of reward
functions that considers both the agent’s objective and the
environment in which it is applied. Additionally, develop
generalizations of the functions based on the robot’s objective
or the operating scenario.
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[30] Rubı́, B., Morcego, B., Pérez, R.: Deep reinforcement learning for
quadrotor path following with adaptive velocity. Autonomous Robots
45(1) (2021)

[31] Shan, Y., Zheng, B., Chen, L., Chen, L., Chen, D.: A reinforcement
learning-based adaptive path tracking approach for autonomous driving.
IEEE TVT 69(10), 10581–10595 (2020)

[32] Shan, Y., Zheng, B., Chen, L., Chen, L., Chen, D.: A reinforcement
learning-based adaptive path tracking approach for autonomous driving.
IEEE TVT 69(10), 10581–10595 (2020)

[33] Singh, B., Kumar, R., Singh, V.P.: Reinforcement learning in robotic
applications: a comprehensive survey. Artificial Intelligence Review
55(2), 945–990 (2022)

[34] Woo, J., Yu, C., Kim, N.: Deep reinforcement learning-based controller
for path following of an unmanned surface vehicle. Ocean Engineering
183, 155–166 (2019)

[35] Yu, R., Shi, Z., Huang, C., Li, T., Ma, Q.: Deep reinforcement learning
based optimal trajectory tracking control of autonomous underwater
vehicle. In: CCC. pp. 4958–4965 (2017)

[36] Zhao, Y., Qi, X., Ma, Y., Li, Z., Malekian, R., Sotelo, M.A.: Path fol-
lowing optimization for an underactuated usv using smoothly-convergent
deep reinforcement learning. IEEE T-ITS 22(10), 6208–6220 (2020)

APPENDIX

The Euclidean distance d in path-following algorithms cal-
culates the distance between the agent and the waypoint or
two points along the desired path as:

d =
√
(ya − yb)2 + (xa − xb)2. (14)

The yaw angle θ between two discrete points can be
calculated using (atan2, being the 2-argument arctangent):

θ = atan2(ya − yb, xa − xb). (15)

If the path is parameterized, the yaw angle is calculated
based on its derivatives at a specific point, and the path is
represented as a continuous function.

The velocity projected on the x-axis of the tangential frame
of reference vT is calculated by:

vT = vx cos(θ) + vy sin(θ). (16)

Considering the current position (x, y) of the agent, the
current waypoint (xk, yk), and the yaw angle θ, between the
next and current waypoint, the lateral error normal ey is:

ey = −(x− xk) sin(θ) + (y − yk) cos(θ). (17)

An alternative method for calculating the lateral error ey ,
considering the path segment between the way-points, is:

ey = sin(θr)dWk−1
(18)

for dWk−1
representing the Euclidean distance between the

agent and the previous waypoint. The longitudinal error ex
represents the deviation from the desired path and is used to
track the agent’s progress along the path:

ex = cos (θr)dWk−1
. (19)

The standard deviation of steering commands is used to
quantify the variability in the agent’s steering behavior, as:

σδ =

√√√√ 1

N

N∑
i=1

(δi − δ̄)2, (20)

where δi represents the individual steering command values
and δ̄ is the average of the steering commands over the last
N readings.


