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Prof. Dra. Adriana Elisa Ladeira Pereira, por ser uma excelente profissional, que me per-
mitiu concluir a disciplina.
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RESUMO

DIAS, Nicolas Freitas. Estudo sobre a Consciência Situacional de VLMs na
Antecipação de Acidentes de Trânsito. 2026. 50 f. Projeto de Graduação – Engenharia
de Automação. Universidade Federal do Rio Grande - FURG, Rio Grande.

Este trabalho investiga a manifestação da consciência situacional em Modelos Multi-
modais de Fronteira, utilizando o domı́nio de acidentes de trânsito gravados por dashcams
como cenário de teste. A pesquisa fundamenta-se na teoria dos nı́veis de percepção, com-
preensão e projeção. A metodologia emprega o desenvolvimento de um Índice Global
de Consciência Situacional que integra métricas de processamento de linguagem natu-
ral, análise semântica e lógica fuzzy para confrontar o desempenho de modelos de última
geração com um referencial humano padronizado.

Os resultados indicam que os modelos apresentam escores elevados no nı́vel de
projeção, contudo, essa tendência manifesta-se de forma fragmentada, uma vez que a
acurácia na escolha do vocabulário e a predição de risco nem sempre são acompanhados
por uma compreensão fidedigna do cenário. Observou-se uma instabilidade que oscila
entre a omissão de eventos crı́ticos e a superestimação de perigos.

O estudo conclui que o estado da arte atual das IAs multimodais apresenta
fragmentações em sua capacidade de compreensão, manifestando “visão de túnel” ou
superestimação de riscos que comprometem a confiabilidade em cenários de acidentes
de trânsito. Diante disso, para trabalhos futuros, sugere-se um estudo mais aprofundado
sobre a ativação da compreensão e a integração de referenciais humanos de multiperspec-
tiva, visando uma validação mais adequada às multivisões desses sistemas inteligentes.

Palavras-chave: Consciência Situacional, Modelos Multimodais, Inteligência Artificial,
Nexo Causal, Robustez Cognitiva.



ABSTRACT

DIAS, Nicolas Freitas. Study on the Situational Awareness of VLMs in Anticipating
Traffic Accidents. 2026. 50 f. Projeto de Graduação – Engenharia de Automação.
Universidade Federal do Rio Grande - FURG, Rio Grande.

This work investigates the manifestation of situational awareness in Multimodal Fron-
tier Models, using the domain of traffic accidents recorded by dashcams as a test scenario.
The research is grounded in the theory of perception, comprehension, and projection lev-
els. The methodology employs the development of a Global Situational Awareness Index
that integrates natural language processing metrics, semantic analysis, and fuzzy logic
to benchmark the performance of state-of-the-art models against a standardized human
baseline.

The results indicate that the models achieve high scores at the projection level; how-
ever, this trend manifests in a fragmented manner, as accuracy in vocabulary choice and
risk prediction are not always accompanied by a reliable comprehension of the scenario.
An instability was observed, oscillating between the omission of critical events and the
overestimation of hazards.

The study concludes that the current state-of-the-art in multimodal AI presents frag-
mentations in its comprehension capacity, manifesting “tunnel vision” or risk overesti-
mation that compromises reliability in traffic accident scenarios. In light of this, future
work should delve deeper into the activation of comprehension and the integration of
multi-perspective human benchmarks, aiming for a validation process better suited to the
multi-view nature of these intelligent systems.

Keywords: Situation Awareness, Multimodal Models, Artificial Intelligence, Causal
Nexus, Cognitive Robustness.
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1 INTRODUÇÃO

A consciência situacional é a capacidade de perceber elementos do ambiente, enten-
der o contexto e antecipar possı́veis eventos. Esta capacidade ganha maior relevância,
dado o avanço das aplicações de IA integradas ao mundo real. Segundo Endsley [17], a
consciência situacional é “a percepção dos elementos no ambiente dentro de um volume
de tempo e espaço, a compreensão de seu significado e a projeção de seu status no futuro
próximo”.

A aplicação prática desses nı́veis de consciência situacional é observada em sistemas
de missão crı́tica. A aviação e a indústria automotiva possuem sistemas especialistas,
como o TCAS (Traffic Collision Avoidance System) e o ADAS (Advanced Driver Assis-

tance Systems). No entanto, esses sistemas operam em domı́nios restritos (como espaço
aéreo, rodovias, regras de trânsito). A nova fronteira da IA busca aplicar esses conceitos
em ambientes não estruturados. Isso inclui desde robótica doméstica, onde o sistema deve
prever que um copo na borda de uma mesa pode cair, até monitoramento de segurança in-
dustrial, onde a antecipação de uma postura instável de um trabalhador pode prevenir um
acidente de trabalho.

Avanços recentes indicam que a adoção de abordagens de IA dotadas de consciência
situacional é um caminho promissor para o incremento da segurança em sistemas
crı́ticos [32]. Essa evolução fundamenta-se na transição de modelos unimodais para ar-
quiteturas multimodais. Conforme definido por Baltrušaitis et al. [6], o aprendizado mul-
timodal busca extrair conhecimento de diversas fontes, integrando dados provenientes de
múltiplos fluxos, para que o sistema capture informações que não seriam perceptı́veis em
uma única fonte de dados de forma isolada. Embora esses modelos demonstrem alta pre-
cisão em tarefas estáticas, como o reconhecimento e a descrição de elementos em cena,
sua habilidade em interpretar sequências temporais complexas e projetar eventos futuros
ainda é uma incerta.
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1.1 Motivação

Diante do aumento no uso de modelos multimodais como VLMs em aplicações que
dependem da interpretação visual do ambiente, surge a necessidade de avaliar em que
medida esses modelos são capazes de ter consciência situacional. Diferente de tarefas
estáticas, a consciência situacional exige que o modelo entenda informações visuais ao
longo do tempo, e que tenha capacidade de reconhecer relações espaciais e temporais dos
itens dispostos visualmente. Esse processo fundamenta-se nos três nı́veis da consciência
situacional apresentados na Tabela 1.

Tabela 1: Nı́veis de Consciência Situacional: Definições e Exemplos (Endsley [17]).
Nı́vel Definição Teórica Exemplos Práticos (Doméstico, Industrial

e Saúde)

Nı́vel 1 Percepção: Perceber ele-
mentos no ambiente den-
tro de um volume de
tempo e espaço.

• Identifica um copo e a borda de uma mesa.
• Localiza um operador e uma empilhadeira.
• Identifica um paciente idoso e seu andador.

Nı́vel 2 Compreensão: Entender
o significado dos elemen-
tos em relação aos objeti-
vos do sistema.

• Percebe que o copo está além do centro de
massa.
• Entende que operador e a empilhadeira
estão em rota de colisão.
• Nota que o paciente soltou seu ponto de
apoio.

Nı́vel 3 Projeção: Projetar o es-
tado futuro dos elementos
no ambiente.

• Antecipa a queda e a quebra do objeto.
• Projeta o acidente caso a velocidade se
mantenha.
• Antecipa uma queda iminente e a urgência
de auxı́lio.

A aplicação desses nı́veis em sistemas de visão computacional, não ocorre de forma
puramente linear. Ela é frequentemente disparada pela identificação de anomalias ou
eventos de interesse [17, 36]. A necessidade de projetar um evento futuro (Nı́vel 3) nasce
de uma percepção de “estranheza” ou desvio durante a fase de compreensão da cena
(Nı́vel 2).

Essa percepção de estranheza decorre da violação de “esquemas” predefinidos. Se-
gundo Arbib [5], esquemas são unidades de conhecimento que guiam a percepção e a
ação, servindo como base para o que entendemos como normalidade. No contexto da
consciência situacional, o Nı́vel 2 (Compreensão) atua comparando o cenário percebido
com esses esquemas internos. Quando um elemento da cena, como um objeto em de-
sequilı́brio ou uma criança correndo em uma área de risco em um parque, diverge do
comportamento esperado pelo modelo mental de mundo (world knowledge), exige que o
modelo não apenas detecte os objetos (Nı́vel 1), mas projete o desfecho daquela dinâmica
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fı́sica (Nı́vel 3). Embora as VLMs identifiquem com precisão os elementos isolados,
eles frequentemente falham em converter essa estranheza inicial em projeções lógicas,
demonstrando uma lacuna no raciocı́nio causal temporal [16].

Este trabalho, busca investigar se as VLMs no estado da arte possuem uma noção de
temporalidade ou se requerem estratégias de prompt engineering para alcançar o Nı́vel 3
(projeção) da consciência situacional. Sem uma instrução estruturada, o modelo pode se
limitar ao Nı́vel 1 (percepção), enquanto estratégias como o Chain-of-Thought (Cadeia
de Pensamento) podem forçar a IA a decompor a cena em etapas lógicas, relacionando
os elementos visualizados para inferir causalidade. Ao avaliar se esses modelos podem
predizer um acidente eminente, utilizando apenas frames (quadros) anteriores ao evento,
este estudo busca mapear os limites da IA à antecipação de eventos em ambientes com
possı́veis riscos.

1.2 Justificativa

Enquanto sistemas dedicados são calibrados para riscos especı́ficos, espera-se que
VLMs de última geração atuem como observadores capazes de identificar anomalias em
qualquer contexto humano, antecipando incidentes antes que se tornem inevitáveis, seja
em ambientes domésticos, hospitalares ou urbanos.

É necessário determinar em que medidas esses modelos possuem uma compreensão
da dinâmica nos vı́deos fornecidos.

Além disso, foi incluido um parâmetro de comparação humano. Enquanto o modelo
de IA é testado em sua capacidade de inferir desfechos a partir de informações visu-
ais limitadas (como quadros selecionados), o avaliador humano observa a totalidade da
situação em vı́deo, permitindo uma descrição dos elementos estáticos e dinâmicas do
evento. Assim, é possı́vel definir em que medida o modelo multimodal compreende a
cena, se comparado com humanos.

1.3 Objetivos

A pesquisa busca avaliar a consciência situacional de modelos de multimodais na
antecipação de eventos dinâmicos em sequência de imagens de trânsito, utilizando o
ground truth humano como parâmetro de comparação.

Para alcançar o resultado da pesquisa, foi definido os seguintes objetivos especı́ficos:

1. Selecionar um dataset de vı́deos reais contendo e não contendo situações de risco
iminente;

2. Desenvolver o prompt a ser aplicado;

3. Produzir o ground truth humano dos mesmos vı́deos do dataset;
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4. Desenvolver a consulta via API aos modelos escolhidos;

5. Comparar e analisar dados obtidos dos modelos com o ground truth.

1.4 Organização do Trabalho

O trabalho está organizado da seguinte forma: No Capı́tulo 2, são apresentados os
conceitos necessários para entender o tema, além de explorar trabalhos relacionados a
proposta em questão. A metodologia está presente no Capı́tulo 3 onde apresentam-se as
ferramentas utilizadas e o desenvolvimento para os experimentos realizados. O Capı́tulo
4 apresenta os resultados obtidos dos experimentos, e o Capı́tulo 5 encerra o trabalho,
com as considerações obtida das analises dos resultados e sugere direções para trabalhos
futuros.



2 FUNDAMENTAÇÃO TEÓRICA

Este capı́tulo apresenta a base teórica necessária para a compreensão do trabalho.
Inicialmente, a Seção 2.1 descreve a evolução dos modelos de linguagem de grande escala
(LLMs), com foco na arquitetura Transformer e no mecanismo de atenção. A Seção 2.2
aborda a convergência entre visão computacional e processamento de linguagem natural.
Por fim, a Seção 2.3 apresenta os trabalhos relacionados que sustentam a base empı́rica e
as métricas de avaliação adotadas nesta pesquisa.

2.1 Modelos de Linguagem de Grande Escala

Vaswani et al. [34] estabeleceram a arquitetura Transformer (Figura 1), que inova ao
utilizar o mecanismo de auto-atenção (Self-Attention). Diferente das arquiteturas anteri-
ores, como Recurrent Neural Networks (RNNs) ou Long Short-Term Memory (LSTMs),
que processavam sequências de forma linear e iterativa, o Transformer rompe com a ne-
cessidade de processamento passo a passo.

A recorrência tradicional impunha uma barreira fundamental: para processar uma
palavra em uma posição t, o modelo dependia obrigatoriamente do estado oculto gerado
na posição t− 1. Esse gargalo dificultava o aprendizado de dependências de longo prazo,
já que a informação tendia a se “diluir” ao longo da cadeia, fenômeno conhecido como o
problema do gradiente desaparecente [8].

A nova arquitetura Transformer permite a análise da sequencia de tokens de entrada
em sua totalidade de forma simultânea, atribuindo pesos de importância a diferentes pa-
lavras conforme o contexto. Sua implementação permitiu o processamento de textos mai-
ores. Com treinamento mais rápidos devido ao paralelismo. Além disso viabilizou redes
maiores e com desempenho superior, estrutura que fundamentou o que conhecemos como
Large Language Models (LLMs) [9].

2.2 Modelos de Linguagem e Visão

A evolução das LLMs permitiu a expansão do processamento textual para a integração
multimodal. Esta seção detalha os marcos dessa transição, começando pelo alinhamento
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Figura 1: Arquitetura do modelo Transformer. À esquerda, o bloco do Codificador (En-
coder) e, à direita, o Decodificador (Decoder). Fonte: Vaswani et al. [34].

contrastivo do CLIP, Subseção 2.2.1, passando pela capacidade generativa e aprendizado
em contexto do Flamingo, Subseção 2.2.2, e culminando na sintonização por instrução vi-
sual do LLaVA, Subseção 2.2.3. Por fim, discutem-se os Modelos de Fronteira, Subseção
2.2.4, e suas capacidades nativas de raciocı́nio complexo.

2.2.1 Alinhamento Contrastivo: O Modelo CLIP

Apresentado pela OpenAI o CLIP (Contrastive Language-Image Pre-training)[28] ,
é o ponto de partida para a integração multimodal. Com o objetivo de aprender quais
legendas textuais que melhor descreviam uma determinada imagem.

A arquitetura, Figura 2, consiste em dois codificadores diferentes: um para visão (Vi-

son Transformer ou ResNet) e o outro para texto (Transformer). O treinamento emprega
uma função de perda contrastiva, que maximiza a similaridade de cossenos entre N pares
corretos (imagem e texto), e minimizar a similaridade entre os demais pares incorretos.

Essa arquitetura permite ao modelo uma capacidade de generalização zero-shot. Ao
transformar rótulos de classes em frases (ex: “cachorro” em “uma foto de um cachorro”,
“gato” em “uma foto de um gato”). O CLIP pode comparar embeddings da imagem
com os das frases e classificar objetos sem nunca ter sido treinado especificamente para
aquela classe, demonstrando capacidade de entender a relação semântica entre visão e
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Figura 2: Resumo da arquitetura do CLIP. (1) Pré-treinamento contrastivo entre imagem
e texto. (2) Criação de classificador zero-shot a partir de rótulos de texto. Fonte: Radford
et al. [28].

linguagem.

2.2.2 Processamento Sequencial e Few-Shot: Flamingo

Embora CLIP [28] tenha resolvido o problema de alinhamento entre visão e lingua-
gem, ele não possui capacidade generativa, ou seja, produzir texto contı́nuo. O Flamingo
[1] surge com o propósito de ser um modelo multimodal, capaz de lidar com sequências
de imagens e textos entrelaçados. Introduziu a capacidade de aprender em contexto (in-

context learning), permitiu o modelo aprender novas tarefas com apenas poucos exemplos
few-shot, sem a necessidade de ajuste fino dos pesos.

A arquitetura, Figura 3, conecta um codificador de visão pré-treinado a uma LLM,
mantendo ambos modelos congelados, para não perder os conhecimentos acumulados. A
integração é feita por dois componentes:

Perceiver Resampler: Converte as caracterı́sticas visuais do codificador (independente
do tamanho) em um número fixo de tokens visuais, reduzindo a complexidade com-
putacional.

Gated Cross-Attention-Dense (GATED XATTN): Camadas treináveis inseridas entre
as camadas do LLM congelado, permitindo que o modelo de linguagem consulte
as informações visuais processadas pelo Perceiver Resampler. Um mecanismo de
gating controla a integração progressiva da visão, garantindo estabilidade durante o
treinamento.

Essa estrutura permite processar fluxos longos de dados multimodais, permitindo a
generalização de tarefas com legenda de imagem e Visual Question Answering (VQA).
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Figura 3: Visão geral da arquitetura do Flamingo. O modelo utiliza um Perceiver Resam-
pler para extrair caracterı́sticas visuais e camadas de Gated Cross-Attention para injetá-las
em um LLM congelado, permitindo o processamento de sequências mistas de imagem e
texto. Fonte: Alayrac et al. [1].

2.2.3 Sintonização por Instrução Visuall: LLaVA

Enquanto o Flamingo [1] focou na capacidade de aprendizado few-shot, a evolução
seguinte buscou tornar a interação multimodal mais conversável e acessı́vel. Liu et al.
[22] introduzem o Language and Vision Assistant (LLaVA), um modelo multimodal que
busca estender o conceito de sintonização por instrução (Instruction Tuning) para o espaço
visual. Essa abordagem permite a criação de um assistente de propósito geral, capaz de
seguir instruções complexas e realizar raciocı́nio visual.

O LLaVA se propõe a conectar modelos pré-treinados, um codificador visual (CLIP
ViT-L/14) e um modelo de linguagem (Vicuna). Diferente do Flamingo [1], a arquitetura
do LLavA é simplificada. Utilizando uma camada de projeção linear treinável, traduz
as caracterı́sticas visuais em embedding que a LLM interpreta como se fossem palavras,
inseridas no inı́cio da instrução pelo usuário. O treinamento do modelo ocorre em duas
etapas como na Figura 4: o alinhamento inicial da projeção e a sintonização fina ponta-
a-ponta (end-to-end), utilizando dados gerados sinteticamente pelo GPT-4 para ensinar o
modelo a raciocinar sobre o conteúdo visual.

2.2.4 Modelos de Fronteira e Sistemas Proprietários

Diferentemente dos modelos descrito nas subseções anteriores, que possuem arquite-
turas abertas e modulares, os sistemas da categoria de fronteira como as famı́lias GPT-4
[24], Claude [3] e Gemini [13], baseiam-se em arquiteturas proprietárias. Esses mode-
los são desenvolvidos sob escalas massivas de processamento e dados, o que resulta em
capacidades de raciocı́nio espacial e temporal significativamente superiores.

Enquanto modelos abertos utilizam adaptadores para conectar a visão à linguagem,
os modelos de fronteira tendem a ter uma multimodalidade nativa. Essa integração pro-
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Figura 4: Arquitetura e processo de treinamento do LLaVA. (1) Pré-treinamento de ali-
nhamento de embedding. (2) Sintonização fina visual ponta-a-ponta (Visual Instruction
Tuning). Fonte: Liu et al. [22].

funda permite que o modelo não apenas identifique objetos isolados, mas compreenda
a dinâmica de cenas complexas, demonstrando um raciocı́nio lógico sobre a disposição
espacial e a evolução de eventos ao longo do tempo [24, 3, 13]. Tais modelos representam
o que se tem de mais evoluı́do no estado da arte.

2.3 Trabalhos Relacionados

A fundamentação deste estudo baseia-se em pesquisas que buscam investigar as
limitações de IA em cenários crı́ticos. A seguir, detalham-se os quatro artigos princi-
pais que sustentam a base de dados, a teoria de percepção temporal e a confiabilidade dos
modelos adotados nesta pesquisa.

2.3.1 Antecipação de Acidentes e o Dataset CCD

O problema da antecipação de acidentes de trânsito é formalmente definido como a
capacidade de prever a probabilidade de um evento crı́tico antes de sua ocorrência real. O
trabalho desenvolvido por Bao et al. [7], fornece a base empı́rica deste estudo ao introduzir
o Car Crash Dataset (CCD).

Enquanto o trabalho original de Bao et al. [7] propõe uma arquitetura baseada em
Redes Neurais Bayesianas e Aprendizado Relacional Espaço-Temporal para lidar com a
incerteza preditiva, o presente trabalho adota uma abordagem distinta: avaliar se Modelos
Multimodais de propósito geral podem substituir modelos especializados nessa tarefa. O
objetivo é avaliar se o raciocı́nio emergente dessas IAs, quando guiado por instruções
estruturadas, pode atingir a Projeção (Nı́vel 3), comparando ao sistema especialista ou ao
ser humano.

2.3.2 Consciência Temporal e Estruturação de Instruções

A necessidade de uma estrutura de instrução refinada para lidar com sequências de
vı́deo é sustentada pelo estudo de Chu et al. [12]. Os autores demonstram empiricamente
que modelos de linguagem possuem uma debilidade intrı́nseca no reconhecimento da
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ordem cronológica de eventos, o que compromete o raciocı́nio causal temporal quando
não há um direcionamento explı́cito.

Esta evidência teórica justifica a adoção da técnica de Chain-of-Thought e a
segmentação do prompt em blocos lógicos neste trabalho. Assim como o método Tem-

pura sugere o agrupamento de informações para melhorar a consciência temporal, este
trabalho força a IA a processar a cena progressivamente, partindo da análise ambiental
estática até a interpretação dinâmica de trajetórias, buscando compensar a lacuna natural
dos modelos multimodais no entendimento de sequências temporais.

2.3.3 Confiabilidade e o Problema da Sobrerreação em VLMs

No que tange à confiabilidade dos alertas gerados, o estudo do Choi et al. [11] fala
sobre o fenômeno da sobrerreação (overreaction). Os autores, identificam que modelos
multimodais tendem a classificar situações que causam “estranheza” como emergências
graves devido a um viés de cautela excessiva, o que pode gerar alarmes falsos frequentes.

Esta discussão fundamenta na escolha de adotar uma persona especializada. O obje-
tivo dessa configuração é garantir que o alerta atribuı́do pela IA seja uma resposta base-
ada em evidências visuais concretas, e não o resultado de uma sensibilidade descalibrada.
Dessa forma, busca-se equilibrar a prontidão na detecção de riscos com a precisão ne-
cessária para evitar alertas desnecessários.

2.3.4 Compreensão Semântica e Benchmarks

A metodologia de extração de dados via questionamento estruturado e análise
semântica encontra respaldo no benchmark do Kim et al. [19]. Este trabalho demonstra
que a real inteligência na compreensão de uma risco exige a capacidade de formular nar-
rativas coerentes sobre as causas e os envolvidos no evento, superando a simples detecção
de objetos.

Ao adotar uma saı́da estruturada, esta pesquisa alinha-se aos padrões de avaliação
propostos pelo VRU-Accident [19], permitindo dizer em que medida a IA consegue iden-
tificar o nexo causal do perigo com mesma semântica do Ground Truth. A integração
de perguntas sobre o ambiente e o alerta de risco (Nı́veis 1 e 3, Tabela 1) no protocolo
de teste demonstra a capacidade de modelos multimodais em correlaciona variáveis do
ambientais.



3 DESENVOLVIMENTO

Este capı́tulo apresenta as metodologias empregadas e as ferramentas utilizadas no
desenvolvimento do trabalho. Inicialmente, a Seção 3.1 descreve as bases de dados CCD
e BDD100K, justificando a escolha desse dataset misto para a análise. Em seguida, a
Seção 3.2 detalha a arquitetura tecnológica, abrangendo o uso da plataforma OpenRouter
e a estratégia de segmentação temporal de quadros. A Seção 3.3 apresenta os modelos
multimodais selecionados e suas configurações, enquanto a Seção 3.4 descreve o processo
de engenharia de prompt e a estruturação lógica das instruções. Por fim, as Seções 3.5
e 3.7 detalham, respectivamente, a construção do ground truth, as métricas de avaliação
semântica e a execução do experimento.

3.1 Dataset

A escolha de um dataset focado em acidentes veiculares para o estudo da consciência
situacional justifica-se pela maturidade e disponibilidade de registros nesse domı́nio. En-
quanto situações crı́ticas do cotidiano, como, o desequilı́brio de um idoso ou a queda de
objetos, são eventos de difı́cil captura, o ambiente viário oferece uma base rica para testar
se modelos multimodais conseguem manifestar consciência situacional.

Na pesquisa, adotou-se Car Crash Dataset (CCD), proposto por Bao et al. [7] em
seu estudo sobre antecipação de acidentes baseada em incerteza. CCD oferece vı́deos
anotados, garantindo que os testes sejam aplicados sobre eventos reais e confirmados.
Um diferencial determinante é a presença de um gound truth que especifica o quadro
(frame) exato de inı́cio do acidente. Essa marcação permite delimitar a janela temporal
que antecede o evento, tornando possı́vel avaliar o Nı́vel 3 (projeção) da consciência
situacional.

Com o intuito de manter o experimento balanceado, foram adotados 1.500 vı́deos
provenientes do BDD100K [37], os quais retratam situações cotidianas sem ocorrências
de acidentes.
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3.2 Arquitetura e Ferramentas

Esta seção descreve a infraestrutura e as técnicas de manipulação de dados utilizadas
para os testes. A Subseção 3.2.1 detalha o papel da plataforma OpenRouter na agregação
das APIs de diferentes provedores. Na sequência, a Subseção 3.2.2 apresenta o método
de segmentação temporal, explicando como a extração de quadros permitiu representar a
dinâmica dos vı́deos dentro dos limites extipulados.

3.2.1 Plataforma de Agregação OpenRouter

Para a execução dos experimentos, utilizou-se a plataforma OpenRouter [26], que
atua como um agregador de Interfaces de Programação de Aplicações (APIs), fornecendo
acesso unificado a diversos Modelos Multimodais de Grande Escala (LMMs). A escolha
desta plataforma justifica-se pela sua capacidade de padronizar as requisições, permitindo
que diferentes modelos sejam avaliados sob as mesmas condições de teste, sem a neces-
sidade de implementações especı́ficas para cada provedor. Essa abordagem de consumo
de inteligência via nuvem alinha-se ao conceito de Model-as-a-Service (MaaS), onde ca-
pacidades cognitivas complexas são integradas de forma modular e escalável [10].

No perı́odo de desenvolvimento deste estudo, as APIs multimodais disponı́veis apre-
sentavam restrições quanto ao tipo de dado suportado, não oferecendo compatibilidade
nativa para o envio de arquivos de vı́deo. Além disso, alguns modelos operavam com
limites de quantidade de imagens enviadas por requisição, o que dificultava a análise de
séries temporais longas. Diante deste cenário, a extração de quadros tornou-se necessária
para ultrapassar a barreira, permitindo que a dinâmica dos vı́deos fosse representada por
uma sequência de imagens estáticas capaz de preservar a continuidade e a percepção de
passagem do tempo. A Figura 5 mostra a dinâmica de comunicação estabelecida. Nela,
observa-se o caminho da requisição padronizada, a qual é processada pelo agregador e
distribuı́da aos respectivos modelos de IA selecionados.

3.2.2 Segmentação Temporal e Seleção de Amostras

Devido às restrições das APIs mencionadas na Seção 3.2.1, os vı́deos foram conver-
tidos em sequências de quadros, ilustrado na Figura 6. Primeiramente, foram estraı́dos
um total de 13 quadros da seguinte forma: foram extraı́dos 10 quadros imediatamente
anteriores ao inı́cio do acidente (conforme a anotação do dataset da Seção 3.1), o quadro
do inı́cio do acidente e 2 imediatamente posteriores. A escolha por 10 quadros anteriores
justifica-se pela necessidade de capturar o contexto de pré momento crı́tico sem se afastar
demasiadamente do evento, garantindo que as pistas visuais ainda fossem semanticamente
relevantes para a antecipação. Da mesma forma, para os vı́deos sem acidentes, utilizou-se
o quadro central do vı́deo como referência, extraindo os 10 imediatamente anteriores, o
quadro central e os 2 imediatamente posteriores, totalizando 13 imagens.
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OpenRouterUsuário

Modelo de IA

Modelo de IA

Modelo de IA

Modelo de IA

Requisição Padrão
(Prompt, Modelo, chave da API)

Requisição Organizada 
por provedor 

Resposta da RequisiçãoResposta da Requisição

Arquitetura de Comunicação entre Usuário, Agregador e Modelos de IA

Figura 5: Esquema de Intermediação de APIs para Avaliação de Modelos Multimodais
via OpenRouter. Fonte: Elaborado pelo Autor.

Embora o processo tenha isolado inicialmente 13 imagens, optou-se por submeter à
API uma janela final de 5 imagens selecionados desse intervalo. Essa decisão baseou-
se em testes preliminares que identificaram 5 quadros como o limite mı́nimo necessário
para que o modelo consiga estabelecer uma noção de fluxo temporal. Observou-se que,
com uma amostragem inferior a esse valor, a percepção de movimento e causalidade era
prejudicada, resultando em respostas inconsistentes e abaixo do esperado.

3.3 Seleção dos Modelos

A seleção dos modelos integrados via OpenRouter [26] fundamentou-se no estado
da arte do processamento multimodal. Assim, optou-se por modelos que representam os
maiores avanços em raciocı́nio lógico-visual até o momento, especificados na Tabela 2.

A escolha de três modelos distintos vindos de diferentes provedores demonstrado na
Tabela 2, tem como base a necessidade de realizar uma validação cruzada dos resulta-
dos. Ao utilizar arquiteturas desenvolvidas sob diferentes paradigmas de treinamento e
alinhamento, busca-se verificar em que medida modelos de última geração manifestam a
consciência situacional, nos nı́veis de percepção, compreensão e projeção [17].

Enquanto o GPT-4.1 foca no refinamento da inferência lógica e causalidade [25], o
Gemini 2.5 Pro oferece uma arquitetura otimizada para correlação temporal profunda em
janelas de contexto massivas [14], e o Claude 4.5 destaca-se pela alta precisão descritiva
com reduzido ı́ndice de alucinações visuais [4].
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Vídeo Completo

Quadros Extraidos

Extração dos
Quadros

Anteriores Central Posteriores

Seleção

Anteriores Selecionados Para Envio

Processo de Amostragem e Seleção de Quadros para Análise

Figura 6: Processo hierárquico de amostragem: do vı́deo completo à seleção final de 5
quadros para a API. Fonte: Elaborado pelo Autor.

3.4 Desenvolvimento do Prompt

O desenvolvimento da instrução final enviada aos modelos (GPT-4.1 [25], Gemini 2.5
Pro [14] e Claude 4.5 [4]) não foi um processo estático, mas um refinamento iterativo inte-
grando técnica de Chain-of-Thought (Cadeia de Pensamento) [35]. O objetivo foi calibrar
a resposta dos modelos de propósito geral a fim de gerar um domı́nio sobre a função
que estava exercendo [23]. Através do context steering (direcionamento de contexto),
buscou-se guiar o raciocı́nio da IA de forma gradual, garantindo que a predição de risco
fosse fundamentada em evidências concretas [31], minimizando interpretações fantasio-
sas que modelos multimodais podem apresentar quando não possuem um direcionamento
de contexto especı́fico.

O processo de refinamento foi dividido em etapas incrementais, permitindo identificar
como cada ajuste na instrução impactava na análise dos modelos. Inicialmente, observou-
se que comandos puramente descritivos resultavam em uma percepção (Nı́vel 1) passiva,
onde o modelo listava objetos sem lhes atribuir relevância causal [17]. Pode-se notar em
alguns cenários que a falta de direcionamento levava a episódios de alucinação visual se-
vera [18]; em um teste preliminar, o modelo interpretou reflexos luminosos como “objetos
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Tabela 2: Modelos Selecionados, Capacidade e Parâmetros de Configuração.
Modelo Provedor Versão Janela de Contexto1 Temperatura2

GPT-4.1 [25] OpenAI 2025-v1 128k tokens 0.0

Gemini 2.5 Pro [14] Google v2.5 2M tokens 0.0

Claude 4.5 [4] Anthropic v4.5 200k tokens 0.0
1 Janela de Contexto: Limite de memória para processamento simultâneo de
múltiplos quadros e comandos textuais.

2 Temperatura: Definida em 0.0 para garantir respostas determinı́sticas,
analı́ticas e sem variações criativas.

caindo do céu”.

Para contornar essas falhas, foi atribuı́do ao modelo uma camada de Adoção de Per-
sona (Persona Adoption). Conforme Deshpande et al. [15], atribuir um papel especı́fico
ao modelo altera seu espaço de busca semântica, forçando a IA a priorizar conhecimentos
e comportamentos alinhados ao perfil designado. Neste estudo se abordou uma perso-
nalidade de um “Co-piloto Hipervigilante Proativo” especialista em direção defensiva,
atuando como o mecanismo de controle para filtrar ruı́dos e ancorar o raciocı́nio do mo-
delo no domı́nio da segurança viária, eliminando as derivações fantasiosas observadas em
prompts neutros [15, 35].

Para garantir que a consciência situacional fosse extraı́da de forma completa, a estru-
tura do prompt, ilustrado na Figura 7, foi segmentada em blocos lógicos progressivos.

• Bloco 1: Contextualização e Persona (O Direcionador): Este bloco estabelece as
regras de comportamento do modelo.

• Bloco 2: Análise de Cenário (Nı́vel 1 - Percepção): Nesta etapa, o modelo preen-
che os campos com o objetivo de forçar o modelo a realizar uma varredura completa
do ambiente. Garante que o modelo “ancore” seu raciocı́nio em fatos ambientais
concretos (ex: pista molhada, baixa visibilidade) antes de prosseguir para o di-
agnóstico [17].

• Bloco 3: Diagnóstico e Projeção (Nı́veis 2 e 3 - Compreensão e Projeção): Este
bloco unifica os estágios superiores da consciência situacional. A IA interpreta a
dinâmica entre os objetos (Nı́vel 2), identificando conexões causais de perigo. O
resultado dessa análise instiga a Projeção (Nı́vel 3), resultando em uma pontuação
de segurança que serve como sı́ntese técnica das evidências percebidas [17, 31, 36].



27

   

Assume the persona of a "Proactive and Hyper-Vigilant AI Co-

Pilot." Your mission is to ensure driver safety by preemptively

identifying and analyzing potential future hazards, not just

immediate ones. You must adopt the mindset of an expert

defensive driver, whose primary goal is to anticipate dangers

before they fully develop.

Your response should be a single valid JSON and nothing else.

Do not add any explanatory text before or after the JSON.

The JSON object must follow this structure:

 "sceneAnalysis": {

 "environment": "Describe using one of the keywords: Urban,

Highway, Rural, Residential, Intersection, Tunnel, Other",

 "traffic": "Describe using one of the keywords: Light,

Moderate, Heavy, Stopped, None",

 "weather": "Describe using one of the keywords: Sunny,

Overcast, Rainy, Foggy, Snowy, Night, Clear Night, Rainy

Night",

 "roadConditions": "Describe using one of the keywords: Dry,

Wet, Damaged, Icy/Snowy, Construction, Unpaved",

 "visibility": "Describe using one of the keywords: Good,

Moderate, Poor (bad image/glare/fog), Nighttime"

 },

 "riskAlert": [

 {

 "risk": "Describ the risk or point of attention.",

 "alertLevel": "HIGH ALERT | MEDIUM ALERT | LOW ALERT",

 "recommendedAction": "The suggested action for the alert."

 }

 ],

 "overallSafetyScore": 0.0,

 "requiredAttentionLevel": "Normal | Medium | Maximum"

Analyze the provided sequence of frames and populate the JSON

structure accordingly.

- In "environment", "traffic", "weather", "roadConditions", and

"visibility", select the most fitting keyword based on the

scene.

- In "riskAlert" need to be just one alert, the more possible

to happen.

- If there are no risks, the "riskAlert" array should be empty.

- The "overallSafetyScore" must be a float from 0.0 (safe) to

1.0 (critical danger).

- The "requiredAttentionLevel" should summarize the driver's

necessary focus. Use one of the following based on the overall

risks:

 - "Normal": For routine situations requiring standard driving

attention (typically for scores between 0.0 and 0.39).

 - "Medium": When specific factors require extra vigilance and

preparation (typically for scores between 0.4 and 0.69).

 - "Maximum": In high-risk situations that demand immediate

focus (typically for scores of 0.7 or higher).

Adoção de Persona
Antecipação: Foco no futuro;
Prevenção: Direção defensiva;
Vigilância: Busca ativa por riscos;
Especialidade: Mindset profissional.

Rigor Técnico (JSON)
Precisão: Formato fixo (JSON);
Objetividade: Sem texto explicativo;
Consistência: Estrutura de dados
rígida;
Integração: Pronto para sistemas
automáticos.

Nível 1: Percepção
Mapeamento: Identifica
elementos básicos da cena;
Contextualização: Define clima,
via e tráfego;
Triagem: Categoriza as variáveis
de contorno.

Nível 2: Compreensão 
Diagnóstico: Interpreta o
significado dos elementos da
cena;
Avaliação: Classifica a gravidade
do risco identificado;
Resolução: Traduz o perigo em
uma recomendação prática.

Nível 3: Projeção
Predição: Estima o desfecho
futuro da situação atual;
Síntese: Consolida múltiplos
dados em um índice de perigo;
Prontidão: Define o nível de
alerta exigido para agir a tempo.

Execução e Regras de Negócio
Operacionalização: Transforma a lógica
em processamento de dados;
Seleção Crítica: Filtra apenas o risco
mais provável (foco total);
Calibração: Ajusta a escala numérica de
perigo (0.0 a 1.0);
Protocolo: Define as diretrizes para a
resposta final da IA.

Prompt Processos de Chain-of-Thought

Figura 7: Organização do Prompt. Fonte: Elaborado pelo Autor.
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3.5 Ground Truth

Para validar a acurácia das percepções geradas pelos modelos multimodais,
estabeleceu-se um Ground Truth (verdade de campo) baseado em anotações humanas,
atuando como o oráculo. O processo de coleta dos dados seguiu o mesmo protocolo de
questionamento aplicado às IAs, porém com uma diferenciação metodológica no acesso
à informação visual.

Enquanto os modelos de IA foram submetidos a uma sequência restrita de 5 quadros, o
anotador humano teve acesso à visualização do vı́deo integral (fluxo contı́nuo) que origi-
nou as amostras. Essa abordagem permitiu que o humano estabelecesse consciência plena
e compreendesse o desfecho total do cenário, garantindo uma interpretação do contexto
causal e da natureza do risco iminente.

O anotador humano respondeu aos campos de Percepção (Nı́vel 1) e Compreensão
(Nı́vel 2), mapeando o ambiente, clima, tráfego e a descrição do risco. Contudo, dife-
rentemente dos modelos de IA, o Ground Truth não incluiu respostas quantitativas como,
nı́veis de Alerta, Escore de Segurança e Nı́vel de Atenção Exigido .

Para viabilizar o processo de forma padronizada e ágil, foi desenvolvida uma ferra-
menta de software, que permitiu ao anotador preencher os campos de percepção e com-
preensão de forma sistemática com tradução automatizada das descrições para o idioma
inglês. Os detalhes técnicos e a interface da ferramenta estão apresentados no Apêndice
A.

O foco foi verificar se a justificativa do alerta correspondia aos fatos reais da cena.
É possı́vel que um modelo atribua um Safety Score baseando-se em uma interpretação
errônea da situação. Sem a comparação com a descrição factual do humano, um alerta
com valor de risco alto poderia mascarar uma falha grave de compreensão visual. Con-
siderando um cenário onde o veiculo esta diante de pedestres, o modelo pode classificar
risco alto, que seria uma classificação correta, porem a interpretação do risco do modelo
foi referente a uma pista molhada inexistente na cena, ocorre um acerto casual devido
a uma possı́vel alucinação. Assim, permite diferenciar entre alertas fundamentados em
evidências reais e acertos casuais derivados de alucinações ou interpretações equivocadas
do cenário.

Durante a etapa de anotação, realizou-se uma filtragem qualitativa no conjunto de
dados do dataset CCD [7] e BDD100K [37] para remover inconsistências que compro-
meteriam a validação. Foram excluı́dos vı́deos que apresentavam indicadores visuais de
edição (como setas indicativas de atenção), cenas inconclusivas, cenas da câmera caindo
ou dedos na frente. Essa curadoria assegurou que o experimento focasse em cenários onde
a consciência situacional fosse manifestada naturalmente pelos modelos.
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3.6 Métricas de Avaliação e Alinhamento Semântico

Esta seção detalha os procedimentos adotados para avaliar os modelos multimodais,
confrontando as predições sintéticas com o Ground Truth. Inicialmente, a Subseção 3.6.1
apresenta o protocolo de métricas estabelecido pelo benchmark VRU-Accident, comple-
mentado pela análise semântica do SBERT para garantir a fidelidade conceitual das nar-
rativas. Na sequência, a Subseção 3.6.2 introduz o Índice Global de Consciência Situa-
cional (SA), uma métrica integradora proposta neste estudo que sintetiza o desempenho
dos modelos nos três nı́veis cognitivos de Endsley, utilizando lógica fuzzy [33] para a
quantificação do risco projetado.

3.6.1 VRU-Accident benchmark

A avaliação do desempenho dos modelos não se restringe apenas à predição numérica
do risco, mas foca primordialmente na fidelidade da compreensão da cena. Para quanti-
ficar essa eficácia, este trabalho adota o protocolo de métricas estabelecido pelo bench-

mark VRU-Accident [19], integrando os ı́ndices BLEU [27], SPICE [2], METEOR [20]
e ROUGE [21] e a métrica neural COMET [29]. Esse conjunto permite medir o alinha-
mento entre a descrição gerada pela IA e o Ground Truth, avaliando desde a sobreposição
de palavras até a qualidade gramatical da resposta.

Contudo, visando elevar a precisão da análise semântica para além da repetição de
termos, este estudo adiciona o uso do SBERT (Sentence-BERT) [30] ao conjunto de
métricas. A inclusão do SBERT busca valida se a IA compreendeu o conceito do acidente
mesmo utilizando sinônimos. As métricas adotadas, suas categorias e funções especı́ficas
no contexto da análise de segurança viária estão detalhadas na Tabela 3. Dessa forma,
a combinação das métricas do VRU-Accident [19] com a análise contextual do SBERT
assegura uma validação que valoriza a clareza e a precisão factual dos eventos narrados
pela IA.

3.6.2 Índice Global de Consciência Situacional

Complementando a análise fundamentada em métricas individuais, este estudo propõe
a quantificação da Consciência Situacional (CS) manifestada pelos modelos por meio de
um Índice Global de Consciência Situacional (SA). O ı́ndice baseia-se na estrutura teórica
dos três nı́veis proposta por Endsley [17], conforme sistematizado na Tabela 1, permitindo
transpor a avaliação de métricas isoladas de processamento de linguagem natural para uma
medida holı́stica de desempenho cognitivo.

A necessidade de uma métrica integradora fundamenta-se na lacuna observada em
benchmarks atuais, como o VRU-Accident [19], embora forneçam dados para análise
qualitativa, mas não estabelecem um indicador numérico unificado para quantificar a
consciência situacional global. Enquanto métricas léxicas tradicionais falham ao pena-
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Tabela 3: Métricas de Avaliação Semântica e Lexical Adotadas.
Métrica Tipo Função no Contexto do Acidente

BLEU [27] Lexical Mede a sobreposição exata de n-gramas,
verificando o uso de termos técnicos es-
pecı́ficos presentes no Ground Truth.

ROUGE [21] Lexical Mede a maior sequência comum de palavras,
focando na fluência e na ordem lógica da nar-
rativa dos fatos.

METEOR [20] Hı́brida Avalia a qualidade da descrição conside-
rando sinônimos e variações morfológicas
das palavras.

SPICE [2] Semântica Analisa a estrutura da cena via gráficos de
cena, validando a relação entre objetos, atri-
butos e ações.

COMET [29] Neural Modelo baseado em embeddings que utiliza
redes neurais para avaliar a qualidade con-
textual da predição.

SBERT1 [30] Semântica Valida a equivalência do diagnóstico de
risco, garantindo que o sentido da mensagem
e o nexo causal sejam preservados.

1 SBERT: Métrica adicionada ao protocolo original do VRU-Accident[19].

lizar variações naturais de vocabulário, métricas como COMET [29] e SBERT [30] ofere-
cem uma avaliação semântica superior por capturarem a essência do nexo causal, mesmo
diante de variações vocabulares. Contudo, essas métricas sozinhas ainda avaliam apenas a
qualidade do texto. A estrutura do ı́ndice SA é decomposta em três dimensões fundamen-
tais, cada uma responsável por avaliar uma etapa distinta do processamento de informação
da VLM. Ao sintetizar a desempenho do sistema em perceber o ambiente (SA1), compre-
ender a dinâmica dos eventos (SA2) e projetar riscos futuros (SA3). O ı́ndice não apenas
avaliará a eficácia global, mas permite diagnosticar em qual estágio da cadeia cognitiva o
modelo manifesta maior vulnerabilidade, avaliando assim sua eficácia global.

O primeiro estágio, referente a percepção (SA1), mensura a capacidade do modelo
em extrair e identificar corretamente os elementos básicos presentes no ambiente. Esta
métrica, expressa na Equação (1), é obtida através da comparação direta entre os metada-
dos gerados pela IA e o Ground Truth, considerando as categorias de ambiente, tráfego,
clima, condição da via e visibilidade.

SA1 =

∑k
i=1 Mi

k
(1)

Onde:
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• SA1: Nı́vel de Percepção;

• M : Variável binária (0 ou 1) que indica a concordância entre a predição da VLM e
o Ground Truth para o metadado i;

• k: Número total de categorias ambientais analisadas (k = 5).

Subsequente à percepção, o nı́vel de compreensão (SA2) avalia a profundidade
semântica e a integração das informações extraı́das da cena. Conforme a Equação (2),
ao combinar a métrica neural COMET [29] com a similaridade vetorial do SBERT [30],
o SA2 quantifica a eficácia do modelo em narrar a dinâmica do evento e o nexo causal do
acidente.

SA2 = α · C + (1− α) · B (2)

Onde:

• SA2: Nı́vel de Compreensão;

• α: Coeficiente de ponderação (0,5);

• C: Métrica neural de avaliação de tradução e qualidade contextual (COMET);

• B: Similaridade de cosseno para análise semântica (SBERT).

Por fim, o nı́vel de projeção (SA3), detalhado na Equação (3), representa a com-
petência preditiva do sistema. A adoção da lógica fuzzy [33] nesta etapa justifica-se pela
utilização de um Ground Truth simplificado e objetivo na etapa de anotação, visando a
escalabilidade do processo e a redução da carga cognitiva dos anotadores. A lógica fuzzy

atua convertendo rótulos discretos em uma escala de risco contı́nua. Essa abordagem
permite a subjetividade humana no processo de rotulagem e permite validar a eficácia
do modelo em antecipar desfechos crı́ticos, permitindo diagnóstica sem a necessidade de
anotações manuais exaustivas.

SA3 = 1− |RF − SIA| (3)

Onde:

• SA3: Nı́vel de Projeção;

• RF : Risco calculado pelo sistema de inferência Fuzzy;

• SIA: Pontuação do Safety Score
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A dinâmica de decisão do sistema Fuzzy do tipo Mamdani, opera pelo método do
centroide. Para a modelagem das variáveis, foram adotadas funções de pertinência trian-
gulares (µ), conforme Figura 8. A dinâmica de decisão tem base de regras apresentada
na Tabela 4, que correlaciona o evento real, o score do modelo e a variável de confiança,
derivada diretamente do nı́vel SA1, para calcular o risco projetado.

Tabela 4: Base de Regras para o Cálculo de Projeção de Risco (SA3).
ID Lógica de Inferência

R1 SE Evento é Acidente E Score VLM é Alto ENTÃO Risco
é Crı́tico.

R2 SE Evento é Acidente E Score VLM é Baixo ENTÃO
Risco é Elevado.

R3 SE Evento é Seguro E Score VLM é Alto E Confiança é
Alta ENTÃO Risco é Moderado (Near-Miss).

R4 SE Evento é Seguro E Score VLM é Baixo ENTÃO Risco
é Baixo.
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0
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Figura 8: Representação das Funções de Pertinência Triangulares para o Risco Calculado.
Fonte: Elaborado pelo Autor.

A integração destes nı́veis resulta no Índice Global de Consciência Situacional
(SAGlobal ), calculado pela Equação (4). A análise conjunta dessas dimensões permite
diagnosticar se o sistema apresenta falhas de interpretação semântica ou se as vulnerabi-
lidades residem na etapa de projeção de risco, podendo dizer em que medida a IA operar
de forma segura e inteligı́vel.

SA =
SA1 + SA2 + SA3

3
(4)

Onde:
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• SA: Índice Global de Consciência Situacional;

• SA1, SA2, SA3: Nı́veis de percepção, compreensão e projeção, respectivamente.

3.7 Experimento

Cada um dos vı́deos (1.500 do BDD100K [37] 1.500 do CCD [7]) foi processado indi-
vidualmente, onde a sequência de 5 quadros em ordem cronológica e o prompt estruturado
foram encapsulados em uma único pacote de requisição para cada modelo. Este processo
foi mediado pelo agregador OpenRouter, que garantiu que todos os modelos recebessem
exatamente a mesma estrutura de requisição, permitindo uma comparação direta.

As respostas retornadas pelas APIs foram salvas individualmente em arquivos JSON.
O armazenamento dos arquivos brutos permitiu a aplicação uma técnica de normalização
linguı́stica, com foco na padronização de tempos verbais e lematização simples. Essa
etapa foi necessária para diminuir distorções nas métricas de sobreposição, garantindo
que variações puramente gramaticais entre as descrições da IA e as anotações do Ground

Truth não penalizassem injustamente a compreensão semântica do modelo.
Ao final do processo, foram gerados dois arquivos principais para a análise dos re-

sultados. O primeiro é um arquivo JSON que contém a comparação detalhada entre as
respostas de cada modelo, o Ground Truth e os respectivos valores das métricas calcu-
ladas. O segundo é um arquivo CSV, que armazena apenas a identificação do vı́deo e
os valores das métricas, facilitando o processamento estatı́stico. Esse conjunto de dados
unificado permitiu comparar o desempenho dos modelos na manifestação da consciência
situacional.



4 RESULTADOS E DISCUSSÃO

4.1 Análise Comparativa de Métricas de Linguagem

A análise do desempenho dos modelos nos dois conjuntos de dados, apresentada na
Tabela 5, revela que as métricas de sobreposição léxica apresentam valores nominais redu-
zidos, comportamento esperado em tarefas de descrição de vı́deo dinâmico. Notadamente,
a métrica BLEU foi omitida desta análise por apresentar escores estatisticamente insigni-
ficantes e próximos a zero, demonstrando que a consciência situacional das IAs não pode
ser medida pela repetição exata de palavras. Essa baixa performance léxica ocorre pela
sensibilidade do BLEU à ordem exata das palavras, enquanto os resultados mostram-se
satisfatórios sob a ótica da compreensão semântica.

Tabela 5: Performance nos Dataset CCD e BDD100K
Dataset CCD Dataset BDD100K

Métrica (0 a 1) Claude 4.5 GPT 4.1 Gemini 2.5 Claude 4.5 GPT 4.1 Gemini 2.5

SPICE↑ 0.1022 0.1420 0.1483 0.0722 0.0900 0.0946
METEOR↑ 0.0668 0.1068 0.1104 0.0954 0.1046 0.1153
COMET↑ 0.5201 0.5700 0.5673 0.5188 0.5155 0.5123
SBERT↑ 0.3968 0.4546 0.4624 0.4125 0.3803 0.3955

ROUGE-1↑
Precision 0.1138 0.1580 0.1604 0.0580 0.0859 0.0810
Recall 0.1505 0.2270 0.2276 0.2354 0.2446 0.2792
F-Measure 0.1147 0.1696 0.1723 0.0909 0.1201 0.1191

ROUGE-2↑
Precision 0.0040 0.0196 0.0226 0.0050 0.0093 0.0123
Recall 0.0052 0.0260 0.0302 0.0232 0.0298 0.0502
F-Measure 0.0039 0.0204 0.0237 0.0080 0.0134 0.0189

ROUGE-L↑
Precision 0.0872 0.1213 0.1250 0.0473 0.0716 0.0671
Recall 0.1210 0.1793 0.1830 0.1959 0.2077 0.2375
F-Measure 0.0893 0.1315 0.1358 0.0745 0.1007 0.0994

Fatores do Ambiente (% acerto)↑
Ambiente 60.46% 63.89% 61.52% 69.11% 66.13% 67.92%
Trânsito 50.95% 56.50% 56.04% 44.02% 45.88% 44.49%
Pista 53.99% 82.66% 70.08% 77.99% 85.09% 73.50%
Clima 55.51% 70.46% 63.48% 62.16% 67.54% 45.47%
Visibilidade 23.19% 66.60% 45.08% 61.00% 70.04% 65.27%

Amostras (N) 264 1477 713 259 1482 717
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-

A análise comparativa revela que, embora o Gemini 2.5 tenha apresentado os maiores
escores em SPICE (0,1483) e METEOR (0,1104), esses valores absolutos são reduzi-
dos, indicando uma dificuldade generalizada em replicar a estrutura lógica dos eventos
e o vocabulário especı́fico dos anotadores humanos.. Da mesma forma, no alinhamento
semântico e contextual, o domı́nio relativo do GPT 4.1 (COMET de 0,5700) e do Claude
4.5 (SBERT de 0,4125) deve ser interpretado com cautela. Escores de COMET nessa
faixa sugerem que o modelo capta apenas a ideia central ou o domı́nio da cena, mas fa-
lha em detalhes cruciais de fundamentação. Já os valores de SBERT em torno de 0,40

são considerados baixos, embora os modelos identifiquem o contexto amplo, as intenções
narrativas e afirmações especı́ficas ainda divergem significativamente do referencial real.

No que tange à identificação de elementos discretos, a análise de metadados ambi-
entais reforça as disparidades entre as arquiteturas, mas expõe fragilidades importantes.
O GPT 4.1 demonstrou maior robustez relativa na percepção de infraestrutura (82,66%
em tipo de pista), enquanto o Claude 4.5 manifestou uma vulnerabilidade crı́tica em vi-
sibilidade, com apenas 23,19% de acerto. Contudo, é imperativo notar que o GPT 4.1
foi testado com um volume de amostras muito superior (N ≈ 1480) em comparação ao
Claude 4.5 (N ≈ 260) e Gemini 2.5 (N ≈ 715). O fato de o GPT manter taxas de acerto
superiores em “Ambiente” sob uma amostragem significativamente maior sugere uma
performance mais estável e menos sujeita a variações estatı́sticas de amostras pequenas,
embora o desempenho geral de todos os modelos em categorias como “Trânsito” (abaixo
de 57%) evidencie que a percepção de nı́vel 1 ainda é um gargalo para a consciência
situacional em modelos de fronteira.

4.1.1 Avaliação do Índice de Consciência Situacional (SA)

A conversão dos dados para a estrutura de consciência situacional, apresentada na Ta-
bela 6, revela o comportamento cognitivo das arquiteturas sob uma perspectiva holı́stica.
O GPT 4.1 consolidou-se com o maior escore global (SA = 0,6453), porém, esse va-
lor indica que o sistema opera em um patamar de confiança apenas parcial, apresentando
lacunas significativas na integração dos nı́veis cognitivos.

Tabela 6: Resultados de Situation Awareness Atualizados (Média ± Desvio Padrão)
Métrica Claude 4.5 GPT 4.1 Gemini 2.5 pro

SA1 (Percepção)↑ 0,5813 ± 0,2336 0,6730 ± 0,2149 0,5930 ± 0,2324
SA2 (Compreensão)↑ 0,4632 ± 0,0813 0,4693 ± 0,0897 0,4741 ± 0,0894
SA3 (Projeção)↑ 0,7851 ± 0,1560 0,8166 ± 0,1578 0,7884 ± 0,1839

SA Global↑ 0,6099 ± 0,1175 0,6530 ± 0,1108 0,6185 ± 0,1239

A análise detalhada por nı́veis expõe as fragilidades do processamento:
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• SA1 (Percepção): Os escores médios em torno de 0,60 a 0,67 são preocupantes,
pois indicam que em aproximadamente um terço dos casos, elementos crı́ticos do
ambiente ou do tráfego não são percebidos corretamente.

• SA2 (Compreensão): Este nı́vel apresentou os menores valores absolutos (médias
de 0,46 a 0,47), o que corrobora a análise das métricas semânticas. O fato de o
Gemini 2.5 Pro liderar este quesito (0,4741) sugere uma capacidade ligeiramente
superior de articulação lógica, mas o valor abaixo de 0,50 demonstra que a compre-
ensão profunda do nexo causal ainda é um desafio não superado pelas VLMs.

• SA3 (Projeção): Todos os modelos apresentaram escores elevados (acima de 0,78),
o que pode ser interpretado como uma “alucinação positiva” ou um viés estatı́stico.
Como as LLMs são treinadas em vastos corpora de texto, elas tendem a prever des-
fechos crı́ticos (acidentes) com facilidade lógica, mesmo quando a base perceptiva
(SA1 ) e a compreensão contextual (SA2 ) estão severamente comprometidas.

Para contextualizar esses resultados, estabeleceu-se que um Índice SAG lobal acima
de 0,75 seria o patamar mı́nimo para considerar a manifestação da consciência situacio-
nal como confiável, patamar este que nenhum dos modelos testados atingiu, visto que o
lı́der GPT 4.1 obteve apenas 0,6530. As VLMs de fronteira operam em uma zona de in-
certeza, falhando em identificar nexos causais sutis apesar de detectarem perigos óbvios.
Essa limitação é evidenciada pela instabilidade do desempenho, com desvios padrões su-
periores a 0,11 no SAGlobal, variando conforme a complexidade visual da cena. Nesse
cenário, a robustez do GPT 4.1 é reconhecida pela sua maior estabilidade (menor desvio
padrão) frente ao Gemini 2.5, que registrou a maior oscilação nos resultados (0,1239) e,
consequentemente, a maior incerteza, sugerindo que tal falta de consistência pode ser tão
prejudicial quanto uma média baixa ao impedir a manutenção de um padrão confiável de
consciência situacional em diferentes contextos crı́ticos.

4.2 Análise Qualitativa e Estudos de Caso

A Figura 9 ilustra as variações de consciência situacional entre as diferentes arqui-
teturas. Embora o GPT 4.1 e o Gemini 2.5 Pro tenham falhado na classificação do
ambiente, ambos demonstraram uma compreensão da dinâmica de risco ao identificar
o veı́culo vindo na direção oposta estava perdendo o controle e poderia invadir a faixa da
própria câmera. Essa percepção detalhada do evento iminente resultou em classificações
de risco mais realistas (0,82 e 0,75, respectivamente), aproximando-se do referencial hu-
mano de 0,92.

Em contrapartida, o Claude Sonnet 4.5 ilustra a limitação no nexo causal, embora te-
nha identificado corretamente a infraestrutura e feito uma observação técnica pertinente
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sobre como a superfı́cie escorregadia aumenta a distância de parada e o risco de derrapa-
gem, ele limitou-se a essa descrição teórica do cenário. Ao não integrar essa observação
à iminência da invasão de pista, o modelo atribuiu um risco de apenas 0,55, tratando a
situação como uma condição de tráfego adversa em vez de uma colisão em curso.

Este caso mostra que a consciência situacional exige que o modelo vá além da
observação de fatores ambientais isolados, sendo capaz de integrá-los em um diagnóstico
de gravidade, o que valida os baixos escores de compreensão e a incerteza diagnóstica
discutida anteriormente. Outros cenários que apresentam falhas similares de nexo causal,
incluindo interações crı́ticas com pedestres e motociclistas, encontram-se detalhados no
Apendice B, reforçando a natureza intermitente da percepção desses modelos.
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Environment Highway Rural Rural Highway

Traffic Light Light Light Light

Weather Snowy Snowy Overcast Snowy

Road Conditions Icy/Snowy Icy/Snowy Icy/Snowy Icy/Snowy

Visibility Good Good Good Moderate

TOTAL 5 3 3 3

...

Perspectiva da IA Perspectiva Humana
Ground Truth

Vehicle with the camera collides with a
dark-colored vehicle coming in the
opposite direction and skids towards the
opposite lane.

GPT 4.1

Oncoming vehicle in the opposite lane
appears to be sliding or losing control,
potentially entering your lane.

Gemini 2.5 Pro

The oncoming vehicle presents a
significant hazard. Given the icy/snowy
road conditions, there is a heightened
potential for them to lose traction and
slide into our lane.

Claude Sonett 4.5

Vehicle ahead in left lane on icy/snowy
road surface with potential for sudden
braking or loss of control. Reduced
traction significantly increases stopping
distance and risk of skidding.
Classificação de risco = 0.55 

Classificação de risco = 0.75

Classificação de risco = 0.82

Classificação de risco cal. (x̄ ) = 0.92

Figura 9: Comparação entre modelos e Ground Truth cenário de colisão em pista conge-
lada. Fonte: Elaborado pelo Autor.



5 CONCLUSÃO

O presente trabalho avaliou a manifestação da consciência situacional em Modelos
Multimodais de Fronteira, utilizando o domı́nio veicular como cenário de teste.

Os resultados demonstram que, embora modelos como o GPT 4.1 [25] apresentem
liderança estatı́stica com um SAGlobal de 0,6453, nenhuma das arquiteturas atingiu o
patamar de confiabilidade de 0,75 estabelecido como referencial para uma consciência
situacional confiável. A análise revelou uma fragmentação cognitiva severa, enquanto
os modelos demonstram alta capacidade de Projeção (SA3 acima de 0,77), essa habili-
dade mostra-se frequentemente desvinculada de uma compreensão real (SA2 ) do cenário.
Identificou-se uma dualidade de falhas interpretativas, em cenários de alta complexidade,
as IA ora manifestam uma “visão em túnel”, ignorando eventos principais para focar
em elementos periféricos, ora demonstram “alucinações teóricas”, superestimando riscos
de forma desproporcional à evidência visual. Essa inconsistência valida a tese de que a
acurácia na escolha do vocabulário não é acompanhado por uma fundamentação lógica
constante.

A principal limitação reside na instabilidade, refletida em desvios padrões elevados
(superiores a 0,11), indicando que a manifestação da consciência situacional varia con-
forme a complexidade da cena. Observou-se que erros na percepção de metadados nem
sempre são o gatilho para falhas de interpretação, existindo casos onde a IA identifica
corretamente o ambiente, mas falha em ligar os pontos causais do evento.

Para trabalhos futuros, recomenda-se o desenvolvimento de um Ground Truth mais ro-
bustos e padronizados, que incorporem múltiplas descrições e perspectivas de diferentes
observadores humanos, garantindo uma base de comparação que diminuir a subjetividade
na avaliação da consciência situacional. No respeito do comportamento dos modelos,
sugere-se investigar estratégias de prompt engineering especificamente desenhadas para
“ativar” o nexo causal, buscando extrair uma lógica de raciocı́nio mais profunda a partir
das arquiteturas existentes. Além disso, é fundamental expandir a aplicação desta me-
todologia para outros domı́nios de interação complexa, como ambientes hospitalares ou
monitoramento industrial, a fim de verificar se a intermitência na consciência situacional
e a desconexão entre os nı́veis cognitivos observadas são caracterı́sticas intrı́nsecas às IAs
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atuais ou se os modelos apresentam comportamentos distintos ao serem desafiados por
diferentes tipos de estı́mulos visuais e dinâmicas de risco.
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A FERRAMENTA DE ANOTAÇÃO DE VÍDEOS

Para a construção do Ground Truth, desenvolveu-se uma ferramenta de anotação uti-
lizando a linguagem Python e a biblioteca de interface gráfica PySide6 1. A interface
apresentada na Figura 10 foi projetada para otimizar o fluxo de trabalho do anotador,
permitindo o processamento ágil e sistemático de grandes volumes de vı́deo.

A ferramenta conta com tradução automatizada integrada via API Deepl Translator 2.
Esta funcionalidade foi implementada para viabilizar a colaboração de diferentes anota-
dores, visto que nem todos possuı́am domı́nio do idioma inglês.

As funcionalidades implementadas incluem:

• Categorização Estruturada: Menu de seleção para variáveis de cena (Ambiente,
Tráfego, Clima, Condição de Pista, Visibilidade, Posição da Câmera e Tipo de
Evento).

• Visualização: Reproduz o vı́deo em looping, permite ao anotador humano observar
quantas vezes for necessário.

• Mecanismo de Curadoria: Campo de seleção para Revisão Manual, utilizado para
sinalizar vı́deos com problemas técnicos ou ambiguidades para análise posterior.

• Exportação em JSONL: Salvamento dos dados em formato JSONL, permitindo
utilização direta pelos scripts de validação.

1PySide6: https://pypi.org/project/PySide6/
2Deepl Translator: https://github.com/nidhaloff/deep-translator

https://pypi.org/project/PySide6/
https://github.com/nidhaloff/deep-translator
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Figura 10: Interface da ferramenta desenvolvida para anotação do Ground Truth.
Fonte: Elaborado pelo Autor.



B COMPARAÇÃO ENTRE MODELOS E GROUND
TRUTH

Os cenários a seguir reforçam a natureza fragmentada da consciência situacional (SA)
discutida no Capı́tulo 4, demonstrando como a ”zona de incerteza diagnóstica”se mani-
festa tanto por omissão de eventos crı́ticos quanto por superestimação de riscos teóricos.

B.1 Caso 1: Omissão de Colisão e Viés de Vulneráveis

A fundamentação estatı́stica é reforçada pela análise deste cenário de colisão entre
terceiros, Figura 11, onde a consciência situacional manifesta-se de forma fragmentada
e enviesada. A zona de incerteza é evidenciada por uma falha de compreensão, embora
o Ground Truth registre uma colisão entre dois veı́culos que avançaram o sinal, todos os
modelos ignoraram o acidente em curso, focando as suas narrativas exclusivamente nos
pedestres que atravessavam a via.

Essa “visão em túnel” compromete severamente o nexo causal, pois as arquiteturas
priorizam elementos isolados em detrimento do evento principal da cena. O resultado é
uma projeção de risco desconexa da realidade do impacto, exemplificada pelo Gemini 2.5
Pro, que atribuiu um ı́ndice de apenas 0.4, enquanto o referencial humano classificou a
gravidade em 0.87 devido ao acidente. Mesmo o GPT 4.1 e o Claude 4.5, que mantiveram
pontuações de risco mais elevadas, fundamentaram os seus alertas na proximidade dos
pedestres e não no desrespeito à sinalização luminosa pelos veı́culos.

Este caso confirma que a consciência situacional destas VLMs é altamente vulnerável,
onde a presença de usuários vulneráveis parece “ofuscar” a percepção de dinâmicas vei-
culares complexas. A incapacidade de identificar uma colisão no campo de visão valida
os baixos escores de compreensão e a instabilidade operacional discutida anteriormente,
demonstrando que o acerto em metadados periféricos não garante uma leitura fidedigna
da situação.
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B.2 Caso 2: Superestimação de Risco e Alucinação Teórica

A fundamentação estatı́stica é reforçada pela análise deste cenário envolvendo um
motociclista em ambiente urbano, Figura 12, onde a consciência situacional manifesta-se
de forma excessivamente cautelosa e tecnicamente imprecisa. A zona de incerteza revela-
se aqui por uma interpretação distorcida da realidade: enquanto o Ground Truth classifica
a situação como um fluxo normal de tráfego com risco baixo (0,14), todos os modelos
projetaram nı́veis de perigo significativamente superiores, variando entre 0,45 e 0,70.

Essa falta de coerência do nexo causal sugere que as VLMs operam sob um viés de
“alucinação de risco” quando detectam usuários vulneráveis em condições adversas. O
Gemini 2.5 Pro, por exemplo, atribuiu um risco elevado de 0,70, fundamentando sua
decisão na instabilidade inerente de veı́culos de duas rodas em pistas molhadas, embora
o comportamento real do condutor na cena fosse estável e seguro. O Claude Sonett 4.5
e o GPT 4.1 seguiram lógica semelhante, focando em riscos teóricos de derrapagem e
ignorando a fluidez observada no referencial humano.

Este caso mostra que a consciência situacional dessas arquiteturas falha pela incapa-
cidade de calibrar a severidade baseada na evidência visual direta em prejuı́zo do conhe-
cimento teórico de treinamento. A falha generalizada na percepção de metadados, onde
os modelos negligenciaram o gelo e a neve apontados pelo humano, classificando o clima
apenas como nublado e a pista como molhada, ignorando elementos visı́veis, reforça que
o sistema não consegue sustentar uma interpretação confiável, seja por negligenciar o
contexto fı́sico ou por falhar na integração lógica dos elementos presentes.
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...

Perspectiva da IA Perspectiva Humana

Environment Urban Urban Urban Urban

Traffic Light Light Light Light

Weather Rainy Overcast Overcast Rainy

Road Conditions Wet Wet Wet Wet

Visibility Good Good Good Moderate

TOTAL 5 4 4 4

Ground Truth

A vehicle traveling in the opposite
direction on the road advances at a traffic
light with the signal closed and collides
with the side of a vehicle crossing in front
of it with the traffic light open.

GPT 4.1

Pedestrians crossing the street directly
ahead, with one person entering the lane
of travel.

Gemini 2.5 Pro

Pedestrians crossing on a wet road
directly in the vehicle's path. The
pedestrian on the right is close and
potentially distracted.

Claude Sonett 4.5

Pedestrian crossing from right side in
close proximity to vehicle path on wet
road surface with reduced traction

Classificação de risco = 0.72

Classificação de risco = 0.4

Classificação de risco = 0.83

Classificação de risco cal. (x̄ ) = 0.87

Figura 11: Comparação entre modelos e Ground Truth em cenário de colisão entre tercei-
ros. Fonte: Elaborado pelo Autor.
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Environment Urban Urban Urban Urban

Traffic Moderate Light Light Light

Weather Snowy Overcast Overcast Overcast

Road Conditions Icy/Snowy Wet Wet Wet

Visibility Good Good Good Moderate

TOTAL 5 2 2 1

...

Perspectiva da IA Perspectiva Humana
Ground Truth

Traffic movement on the road.

GPT 4.1

Motorcyclist on the right may merge into
traffic or lose control due to wet road and
nearby patches of snow.

Gemini 2.5 Pro

Moped rider directly ahead is on a wet
road with potential for ice. Two-wheeled
vehicles are highly unstable in these
conditions; a sudden slip or fall is a
significant possibility.

Claude Sonett 4.5

Motorcyclist ahead on wet road with
visible snow piles - vulnerable road user
with reduced traction and stability in post-
winter conditions

Classificação de risco = 0.45

Classificação de risco = 0.7

Classificação de risco = 0.55

Classificação de risco cal.  (x̄ )  = 0.14

Figura 12: Comparação entre modelos e Ground Truth em cenário de fluxo de trânsito
normal. Fonte: Elaborado pelo Autor.
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