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Abstract—This paper provides an overview of surface recon-
struction methods. It ranges from classical geometric algorithms
to advanced deep learning techniques, which offer greater flexi-
bility by leveraging neural networks to handle complex and high-
dimensional data. It involves creating a digital 3D model from
real-world data and capturing the geometric details of objects or
scenes. The intersection with robotics comes by providing a world
model for long-horizon tasks and a better understanding of the
attributes of each object in the scene, enabling a more efficient
data collection for open-vocabulary planning. In addition, we
introduce key concepts that intersect with this topic, offering
a better understanding of the techniques and the state of the
field. Considering this, a significant focus is placed on methods
that represent scenes in a five-dimensional space, enabling the
synthesis of highly accurate new views from 2D input data.
Considering this, the present paper aims to portray an overview
of three-dimensional surface reconstruction, highlighting some of
the main turning points in the field of research.

Index Terms—Surface Reconstruction, Panoptic Segmentation,
NeRF, Deep Learning.

I. INTRODUCTION

Over the past few decades, the importance of 3D repre-
sentation in computers has increased exponentially, as has
the effectiveness of methods to achieve it. This 3D data
representation is vital in multiple applications, including sim-
ulations, robotics, machine learning, and other tasks. Robotic
simulations, in particular, rely heavily on accurate 3D repre-
sentations to model real-world environments and behaviors,
providing a crucial link between theoretical robotics and
practical applications. Such simulations also serve as valuable
tools for learning, offering safe and controlled environments
for experimentation and skill acquisition. The diverse range
of digital data types is essential for transmitting, storing, and
processing information in these digital environments [1].

Surface reconstruction is a long-standing challenge in
robotics, aiming to create accurate geometric representations
of objects or scenes from a sample of real-world data. This
process allows for the digital representation of an object’s
surface with high geometric and spatial precision [2].
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Traditional surface reconstruction methods, such as Poisson-
and geometry-based techniques, have proven effective in
many scenarios. However, the advent of deep learning-based
methods opened new possibilities by enabling more flexible
reconstructions that can handle complex and high-dimensional
data. These methods leverage the power of neural networks to
learn intricate patterns and 3D data representations, leading
to significant advancements in the quality and efficiency of
surface reconstruction. The high applicability of these methods
has helped the development of sim-to-real applications, further
increasing the learning capabilities of robotic systems [3].

Considering this, the current paper aims to portray a review
of surface reconstruction and its methods, highlighting some
of the main points in the field of research, the applications in
robotics and paving the way for future works.

The current paper is divided as follows: Section II presents
an overview of the main formats for digital representation of
3D and surface data. Section III explains the concepts for
surface reconstruction. Section IV describes surface recon-
struction methods like classics and deep learning. Section V
shows the applications of surface reconstruction in the robotics
area. Finally, Section VI summarizes the discussion.

II. FORMATS FOR DIGITAL DATA REPRESENTATION

Digital data representation formats encompass various ways
to represent information, from plain text to complex media
like audio, video, and images. This diversity is crucial for
transmitting, storing, and processing data.

The nature of the data determines the most suitable format
for representation. Regarding geometry, there is a distinction
between Euclidean and non-Euclidean data. Euclidean data
adhere to classical geometric principles, with distances mea-
sured linearly using the Euclidean metric. Non-Euclidean data
[4], on the other hand, deviate from these rules, employing
alternative distance metrics, such as measuring distances along
great-circle arcs on spherical surfaces. Euclidean data are often
associated with simple geometric forms, while non-Euclidean
data involve more complex contexts and high-dimensional
spaces. Point clouds are collections of Cartesian coordinates
representing positions in space. Their typical sources are
LiDAR sensors or photogrammetry techniques [5]. Meshes
[6] are fundamental structures in computer graphics and 3D
modeling. They represent three-dimensional surfaces using
polygons, particularly triangles. Triangular meshes are simple
and efficient, storing information such as spatial position,
color, texture, and normals.



III. SURFACE RECONSTRUCTION

Surface reconstruction [7] is a complex and long-standing
challenge in the field of computer vision, aiming to create
accurate and detailed geometric representations of objects or
scenes from a set of real-world data using two-dimensional
or three-dimensional information captured by sensors like 3D
cameras or laser scanners. These data are processed to create
detailed models of the object’s geometry, enabling the digital
representation of its surface with high geometric and spatial
accuracy using the following general concepts.

A. Convex Hull

A significant concept for some methods that extend these
algorithms for surface reconstruction is the so-called Convex
Hull, which represents the smallest convex envelope contain-
ing all the points in a set [8]. To delineate a specific area, the
algorithms implementing this concept draw lines between all
neighboring points, creating edges, and subsequently connect
these edges to neighboring edges, forming a hollow shell, as
shown in Fig. 1.

Fig. 1: Set of red points enclosed by the smallest possible solid
in gray [9].

B. Normal Vector

Another essential concept for numerous methods is the sur-
face normal vector around a point [10]. In three-dimensional
geometry, the normal is the direction perpendicular to a surface
around a given point. For each point, there is an associated
orthogonal vector representation pointing outward. Fig. 2
shows the normal vector for multiple points in the center of
each cell.

Fig. 2: Surface with computed normals [11].

IV. SURFACE RECONSTRUCTION METHODS

This section explores methods for reconstructing surfaces
like classical methods and learning approaches.

Classic Methods

The principle of surface reconstruction in mesh structures
is one of the most significant and well-developed areas in
computing, with various classical approaches aiming at broad
generalization through algorithms such as Delaunay [12],
Marching Cubes [13], and RANSAC [14], as noted by de Berg
et al. [4].

A. Alpha Shapes

Building on this line of algorithms, methods like Alpha
Shapes [15] emerge, a generalization of Convex Hull III-A
based on the alpha parameter, denoted α. This parameter
defines the radius or threshold of the maximum distance
between points, which, once exceeded, becomes a boundary,
as demonstrated in Fig. 3.

Fig. 3: Example where unfilled circles have their origin points
determined as a boundary [16].

The advantages of Alpha Shapes are their low computational
cost and ability to represent and extract complex topological
information, such as cavities and holes. However, the definition
of the value α can impact the resulting structure. Additionally,
in datasets with uneven point distribution, the reconstruction
quality tends to form imprecise or incomplete structures in
certain areas, as demonstrated in Fig. 4.

Fig. 4: Result variation as an alpha parameter function [5].

B. Ball Pivoting

Another relevant classical method is Ball Pivoting [17], an
interpolation method for polygonal meshes based on a sphere
of radius ρ and the iterative pivoting of this sphere until it is
no longer possible.

In simple terms, the analogy for the algorithm’s operation
is that the set of points M represents the three-dimensional



surface of an object, and N is a subset of points from M,
assuming that N is dense enough so that a sphere of radius
ρ does not pass through when placed on top. Consequently, a
sphere placed on a set of three points, without losing contact
with two of these points, is translated until it touches a third
point again, as shown in Fig. 5.

A valuable feature of Ball Pivoting is that it handles noise
and data gaps. The method accounts for the normals of the
points, allowing it to check the consistency of a triangle’s
direction to determine whether or not to form the polygon, as
shown in Fig. 5.

Fig. 5: (a) Sparse points resulting from noise are not con-
sidered if the overlapping set is dense enough. (b) The
sphere’s movement creates a link inconsistent with the adjacent
normals, and the method prevents the face from closing. (c)
The lower layer is sufficiently distant from the upper layer,
allowing two surfaces to be formed in the end [17].

Ball Pivoting performs well in various cases, but it en-
counters difficulties in forming meshes with sharp corners,
point clouds with drastic differences in sparsity, or surface
roughness, as the sphere’s ρ coefficient can make certain areas
inaccessible for pivoting, resulting in a loss of detail in the
final mesh.

C. Poisson

Finally, one of the later methods in the classical literature is
the Poisson method [18], which solves a regularized optimiza-
tion problem to obtain a smooth surface. This quality makes
it preferable compared to the previously described methods,
which convert the points of a cloud directly into mesh vertices
without any modification.

The distinguishing feature of the Poisson method lies in
recognizing the integral relationship between the oriented
points in the surface sample of a model and its indicator
function. Specifically, the gradient of the indicator function is
a matrix predominantly populated by zeros (since the function
is constant in most of the matrix), except at points relatively
close to surfaces, where the function’s value corresponds to
the inward normal. Fig. 6 illustrates this analysis.

The primary strength of the Poisson method is that the
reconstruction aims to be fully closed, assuming that the
structure has no holes or empty regions. This characteristic
makes it less sensitive to incomplete scans and ineffective for
applications with hollow spaces or sharp edges.

Segmentation Methods

In this context, segmentation refers to dividing or grouping
elements into smaller subsets, identifying regions of interest

Fig. 6: Illustration of Poisson reconstruction in 2D [18].

within an image, a point cloud, or any other data representa-
tion.

D. Semantic Segmentation

Semantic segmentation [19], detailed in Fig. 7, is a process
that assigns labels to each pixel in an image, indicating the
semantic set to which it belongs. For example, in a scene,
semantic segmentation can distinguish between objects such
as cars, trees, roads, and people, assigning a label to each
corresponding region in the image.

Fig. 7: Base image (above); Semantic Segmentation (below)
[20].

E. Instance Segmentation

Instance segmentation [21], detailed in Fig. 8, goes beyond
semantic segmentation by categorizing the semantic class and
distinguishing each unique instance within those categories.
Uniquely, only the classes described as relevant will have a cat-
egory assigned to them. For example, in a scene with several
cars, instance segmentation would assign unique identifiers to
each one, allowing for the individual tracking of these objects
over time.

F. Panoptic Segmentation

Finally, panoptic segmentation [22, 23], detailed in Fig. 9,
unifies semantic and instance segmentation into a single result,
providing both semantic and instance labels for all pixels in the



Fig. 8: Instance Segmentation [20].

image. Moreover, similar to instance segmentation, the concept
of using relevant classes to determine whether a pixel should
be classified exists. However, panoptic segmentation classifies
all pixels semantically. Those not belonging to relevant classes
do not receive a unique instance label. For example, in a
domestic context, in a kitchen, chairs, which are relevant
classes, would be labeled as ”chair 1”, ”chair 2,” and ”chair 3,”
whereas pixels of the floor, which are not a class of interest,
would only receive the label ”floor”.

Fig. 9: Panoptic Segmentation [20].

Deep Learning-based Methods

In recent years, the advancement and application of Deep
Learning techniques have significantly revolutionized various
fields of computer science, including computer vision and
three-dimensional surface reconstruction. In particular, the
use of Deep Learning methods for surface reconstruction
from sparse data, as discussed by Chen in [24], has gained
prominence due to their ability to handle complex and high-
dimensional information.

Traditional surface reconstruction methods and geometry-
based techniques have proven effective in many scenarios.
However, Deep Learning offers an alternative and promising
approach to surface reconstruction, enabling the learning of
intrinsic data representations without heavily relying on heuris-
tics or explicit modeling.

G. ShapeFlow

ShapeFlow [25] is a method based on the ”Retrieve and
deform template” approach, which finds a similar template
and deforms it accordingly.

The ShapeFlow model has three major stages: forming and
learning a deformation-sensitive space by vectorizing various
objects considered elemental for the application (embedding),
loading the input data into this space, and identifying the

most similar shape to the object using a nearest-neighbor
classifier, and finally, a deformation neural network operates
on the already learned structure, seeking the best geometric
correspondence. Fig. 10 illustrates this process.

Fig. 10: Illustration of the chronological sequence of the
deformation space learning process. (a) Input is a sparse point
cloud or the conversion of a depth map into a point cloud.
(b) Visualization of the base object library with the estimation
of the input data’s position. (c) The unsupervised deformation
network acting on the reconstruction [25].

ShapeFlow offers a flow-based model capable of recon-
structing objects with fidelity regarding volume, isometry, and
symmetry. However, it encounters issues due to the limitation
of the base structure group and the lack of semantic super-
vision, as the input cloud will always be tied to a template,
regardless of how different they may be.

H. Scan2Mesh

Scan2Mesh [1] is a neural network-based reconstruction
method that is not limited to point clouds, as it focuses on
the generation and connection of vertices, which means there
is no direct translation from a point in the cloud to a vertex
in the mesh.

The procedure starts with an MLP-type point cloud gen-
erator to produce a set of points. Next, the method creates
a fully connected graph between these points. Then, a graph
neural network predicts which edges should exist in the final
mesh. Finally, accounting for the predicted edges, it calculates
all possible triangular faces, constructing a dual graph, and a
second graph neural network determines which faces belong
to the final mesh. Fig. 11 illustrates the process.

Fig. 11: Visual representation of Scan2Mesh [1].

Therefore, avoid hollow structures and handle sharp edges
well, as shown in Fig. 12. However, the high computational
cost due to the different stages of the process significantly
limits the maximum number of vertices.



Fig. 12: Input data (left), Scan2Mesh inference (center), ex-
pected result (right) [1].

I. Neural Radiance Field
Neural Radiance Field, introduced by Mildenhall et al.

2021, is a deep learning-based method for reconstructing a
three-dimensional representation of a scene from sparse two-
dimensional images. The NeRF model learns the geometry of
the scene, camera poses, and reflective properties, achieving
state-of-the-art results in synthesizing new views of complex
scenes by optimizing a continuous volumetric function using
only a sparse set of input images.

The method renders a scene using a fully connected deep
network that takes only a continuous coordinate, composed
of the spatial location (x, y, z) and the viewing direction
(θ, ϕ), outputting the volumetric density and the radiance
emitted from the respective 3D point. Figure 13 illustrates this
simplified logic.

(x,y,z,θ,ϕ)

FΘ

(RGBσ)

Fig. 13: Logic of the NeRF operation [26].

The views are synthesized using classical volume rendering
techniques by queuing the 5D coordinates along the camera’s
orthogonal rays, projecting the output colors and densities onto
an image, as exemplified in Fig. 14. Given that volumetric
rendering is differentiable, the input required to optimize the
function is the five-dimensional coordinates.

Fig. 14: Projection of coordinates along the camera rays [26].

Results like the one in Fig. 15 demonstrate that the Neural
Radiance Field, with its approach to 3D reconstruction through
the representation of the scene in five dimensions (three spatial
dimensions and two view-related dimensions), produces sig-
nificantly more accurate results, addressing issues previously
discussed in this section.

V. APPLICATIONS IN ROBOTICS

Digital twins, virtual replicas of physical systems, benefit
from NeRF by creating accurate 3D models of environments

Fig. 15: Complete NeRF process [26].

in which robots can interact with their surroundings in a more
informed manner. In applications for industrial robots, accurate
3D reconstructions, based on images and poses gathered by
the robot, can streamline workflows and improve operational
efficiency [27]. Additionally, the ability of NeRF to synthesize
novel views from sparse input data allows the continuous
updating of digital twins as the physical environment changes,
thus maintaining their relevance and accuracy over time [2].

Regarding sim-to-real transfer in robotics, where the goal is
to bridge the gap between simulated environments and real-
world scenarios, realistic simulations to train robotic systems
can be generated. For 3D scene representations, NeRF fa-
cilitates alignment between simulated and real environments
through a bundle adjustment approach [3]. Furthermore, in-
tegrating uncertainty quantification into NeRF enhances the
robustness of these models, making them more suitable for
real-world applications where variability is a factor [28].

Moreover, surface reconstruction can enhance the devel-
opment and evaluation of robotic systems in controlled en-
vironments before deployment in the real world. Thus, for
example, it can be employed to optimize the grasping of
transparent objects, showcasing its utility in training robots
for complex manipulation tasks [29]. Furthermore, advances
in NeRF, such as the introduction of Complex-Motion NeRF,
allow simultaneous optimization of camera poses and scene
representations, which is crucial for dynamic environments
where robots must adapt to changing conditions [30].

VI. CONCLUSION

The paper reviews three-dimensional surface reconstruc-
tion methods, covering classical geometric approaches and
advanced deep-learning techniques. Traditional methods have
proven effective in various scenarios but are limited by their
reliance on specific geometric assumptions and their sensitiv-
ity to incomplete or noisy data. In contrast, deep learning-
based methods, such as the NeRF method, have opened new
possibilities, enabling more flexible reconstructions to handle
complex high-dimensional data. While classical methods re-
main relevant, surface reconstruction is shifting towards deep
learning techniques. These methods offer the ability to learn
intrinsic data representations, leading to more accurate and
robust reconstructions, especially from sparse or noisy data.

Moreover, surface reconstruction can be employed to op-
timize training for complex manipulation tasks. Furthermore,
advances in NeRF allow for simultaneous optimization of cam-
era poses and scene representations, enabling robots to adapt
to changing conditions. These advancements further strengthen



sim-to-real applications in robotics, facilitating more accu-
rate scene understanding and improving the transferability of
learned models to physical systems.
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