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Abstract. SLAM (Simultaneous Localization and Mapping) is a tech-
nique that enables a robot to construct a map of its environment while
simultaneously estimating its own position within that map. Accurate
evaluation of SLAM algorithms in mobile robotics is essential to ensure
the effectiveness and safety of autonomous navigation. However, tradi-
tional validation methods often face limitations in spatial coverage and
environmental data specificity. This project presents a method that in-
corporates fiducial markers, specifically ArUco tags, strategically placed
throughout the robot’s operational environment, called ArucoSLAM. Us-
ing an onboard monocular camera, the system detects these markers and
leverages their relative positions to both the world and the robot to cor-
rect accumulated errors during the SLAM process. Additionally, this
enables loop closure through tag detection, addressing one of the major
challenges in Visual SLAM. The primary goal of this approach is to en-
hance navigation accuracy by overcoming key limitations of traditional
SLAM systems that do not employ environmental reference tags. Experi-
mental results demonstrated that this approach improves map generation
when compared to OrbSLAM3 operating without markers, as well as to
scenarios where markers are present only for visual enrichment.
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1 Introduction

Simultaneous Localization and Mapping (SLAM) is a technology in robotics and
computer vision that enables an agent to create a map of an unknown environ-
ment while simultaneously tracking its own location within that environment
[1].

The main objective of SLAM is to construct a reliable and enable accurate
localization in real-time, particularly in scenarios where prior environmental in-
formation is not available [16].
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OrbSLAM3 [2] is one of the state-of-the-art visual SLAM solutions currently
available, supporting monocular, stereo, and RGB-D scenarios. It introduces
several improvements over ORB-SLAM2 [9], including more efficient keyframe
management, enhanced support for depth sensors, and better relocalization in
complex environments.

One of the main features of SLAM is Loop-Closure, which enables the al-
gorithm to identify previous visited regions, allowing the correction of the map
and relocalization of the robot [7].

In homogeneous environments, where textures and visual features are repet-
itive or lack distinctiveness, visual SLAM faces significant challenges. Since con-
secutive frames tend to be very similar, the extracted keypoints show little to
no variation, making it difficult to recognize unique patterns and compromising
the loop-closure stage [5].

In this context, incorrect loop detection may occur, leading to false positives
that mistakenly indicate a previously visited location. This results in inconsis-
tencies in the generated map and the robot’s current localization [6].

Therefore, in environments with low texture variation, OrbSLAM3 struggles
to identify keyframes and, consequently, has difficulties extracting keypoints.
This causes the system to lose its ability to localize reliably, leading to trajectory
deviation or loss within the environment [2].

To overcome these challenges, we propose to combine fiducial markers to
improve SLAM robustness. Fiducial markers are visual patterns that help com-
puter vision systems determine positions and orientations. The most common
are ArUcos and AprilTags.

Therefore, ArUcos were selected for this work due to their ease of detection
under different lighting conditions, their support in the OpenCV library, and
their low processing requirements, making them a practical choice for embedded
systems that often face varying light conditions. Moreover, integrating fiducial
markers such as ArUcos into OrbSLAM3 is a viable approach to overcoming
these limitations, which justifies the choice of this algorithm as the foundation
for the development of ArucoSLAM, the method proposed in this work.

The experiments tested ArucoSLAM against OrbSLAM3 mapping an envi-
ronment with ArUcos and relocalization, with ArUcos without relocalization and
without ArUco tags.

Nonetheless, the main motivation for this work is to explore and develop
a system capable of correcting accumulated SLAM errors, enhancing system
robustness and map quality, assisting in robot relocalization, and generating
accurate maps through the detection of fiducial markers.

The remainder of the work is divided as follows: Section 2 dives into related
works and the state of the art. Section 3 explains ArucoSLAM. Section 4 details
the experiments and discusses the results. Lastly, Section 5 draws conclusions
and future works.
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2 Related Works

There are algorithms in the literature that rely on ArUcos or other types of
tags to perform SLAM [8, 13–15]. However, there is a need to combine keypoint
detection and the use of fiducial markers to enhance mapping accuracy and
robustness in complex environments.

UcoSLAM [11] is an algorithm that combines keyframe detection with the
identification of ArUco markers to perform simultaneous mapping and local-
ization. Its main advantage lies in its ability to operate in environments where
visual features may be sparse or indistinct, using the markers to assist in robot
relocalization and trajectory correction. This combination allows UcoSLAM to
maintain accurate localization even under challenging conditions.

However, UcoSLAM uses an earlier version of ORB-SLAM (ORB-SLAM2
[9]), which does not benefit from the latest improvements introduced in Orb-
SLAM3 [2]. Additionally, it is a system developed for ROS1, which limits its
compatibility with more modern architectures, such as ROS2.

SPM-SLAM (Semantic Planar Marker SLAM) [10] is an algorithm that in-
tegrates planar marker detection and semantic information to improve SLAM
performance. In addition to using keypoints for mapping, SPM-SLAM incorpo-
rates planar markers, such as ArUcos, to add a level of semantic understanding
to the generated map, allowing the system not only to localize the robot but
also to interpret its surrounding environment.

Despite its advantages, SPM-SLAM has the drawback of increased compu-
tational load due to the integration of semantic information, which can result in
slower performance compared to approaches that use only keyframes/keypoints
or simple markers. Furthermore, its reliance on additional semantic data may
make it less effective in dynamic or poorly structured environments where such
information is not readily available.

TagSLAM [12] is an approach that focuses exclusively on the use of fiducial
tags, such as AprilTags, to perform SLAM. Unlike other methods that combine
keyframes with markers, TagSLAM relies almost entirely on markers to map the
environment and navigate. This approach is particularly effective in controlled
environments, where visual features are scarce and marker-based mapping can
be more reliable.

However, TagSLAM faces significant challenges in large or outdoor environ-
ments, as it depends entirely on the presence of fiducial tags distributed through-
out the environment to function properly. In uncontrolled scenarios, where plac-
ing a large number of tags is not feasible, its application becomes limited.

3 ArucoSLAM

The main goal of ArucoSLAM is to improve current visual SLAM algorithms
by combining OrbSLAM3 with fiducial tag detection. In this context, the use of
fiducial tags is essential to assist with relocalization and loop closure, improving
robustness and reliability.
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ArucoSLAM combines classical visual SLAM methods with fiducial marker
detection, such as ArUco tags. However, unlike other conventional methods,
ArucoSLAM uses only an onboard monocular camera. This integration aims to
overcome limitations faced by traditional systems in challenging environments,
such as homogeneous areas or those with few distinct visual features.

An ArUco marker is a synthetic square marker composed of a wide black
border and an internal binary matrix that determines its identifier (ID). The
black border facilitates its quick detection in the image, and the binary encod-
ing enables identification and the application of detection and error correction
techniques. The size of the marker determines the size of the internal matrix.
For example, a 4× 4 marker is composed of 16 bits.

During navigation, the robot may face challenges such as environmental
changes, lighting variations, or a lack of sufficient visual features. In such cases,
fiducial tags act as fixed reference points, allowing the algorithm to accurately
relocalize the robot. Upon detecting an ArUco marker, the system can calculate
the robot’s estimated position and relocalize it within the environment.

Moreover, fiducial tags play an important role in loop closure detection, which
is the process of correcting accumulated errors along the robot’s trajectory. The
combination of keypoints and fiducial tags allows the system to recognize when
the robot returns to a previously visited location. In contrast, when only key-
points are used, there is a greater risk of false positives in environments with
similar visual features, leading the robot to mistakenly identify locations as loop
closures when they are not.

In simulated environments or other real-world environments with limited
visual information due to repetitive textures, the use of fiducial tags not only
aids in loop closure and relocalization but also enriches the visual environment,
making it easier for keyframes to be acquired during navigation and consequently
allowing new keypoints to be extracted.

Therefore, ArucoSLAM uses keypoints to build the map and estimate the
robot’s position, while ArUco markers are used to enhance the accuracy of relo-
calization. Loop closure detection is performed using both keypoints and ArUco
markers, allowing for the correction of trajectory errors and the generation of a
more consistent map reflecting the robot’s path.

The detection of ArUco markers is carried out in three stages:

1. Capture and Preprocessing: The images captured by the robot’s cameras
are processed using preprocessing techniques such as contrast adjustment
and noise reduction to improve tag detection.

2. Tag Detection with OpenCV and ArUco: The aruco library from
OpenCV was used to detect fiducial markers in the images. The aruco li-
brary is designed to quickly identify tags and provide information about their
position and orientation relative to the camera.

3. Pose Estimation: Once detected, the fiducial tags provide information
about their pose relative to the camera. The pose is represented by a homoge-
neous matrix that describes the transformation between the tag’s coordinate
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system and the camera’s coordinate system. The aruco library returns this
pose as a translation vector and a rotation matrix.

During navigation, the robot may get lost due to accumulated errors or chal-
lenges within the environment. To prevent this, ArucoSLAM uses ArUco detec-
tion, which is integrated into OrbSLAM3 through a ROS2-developed wrapper.
Relocalization occurs as follows:

1. Detection of ArUcos: The wrapper detects ArUco markers present in the
scene and calculates the robot’s estimated position in the global coordinate
system using homogeneous transforms.

2. Integration via ros1_bridge: Through the ros1_bridge, the position pub-
lished by the wrapper on a ROS2 topic can also be read by ROS1, since the
ros_bridge serves to translate topics between the two middleware systems
(ROS1 and ROS2). The position is then used by the native functions of
OrbSLAM3, acting directly on the loop closure process.

3. Pose Correction: When the robot’s position is recalculated based on fidu-
cial tags, its location in the environment is also adjusted.

Loop closure detection allows the correction of accumulated errors in the
robot’s trajectory and ensures a consistent map. The use of ArUco markers at
this stage improves the system’s reliability.

Systems based solely on keypoints may identify false loop closures in homo-
geneous environments or those with repetitive textures, which compromises the
consistency of the map. Besides, since each ArUco marker is unique, real loops
are more easily identified, allowing the robot to relocalize itself.

To integrate these improvements into the SLAM system, tf2 transforms were
used, which are an essential part of the ROS2 library for handling transforma-
tions between different coordinate systems. The tf2 library allows the conversion
between the ArUco coordinates and the global coordinates using homogeneous
matrices to represent the transformations.

4 Experiments and Results

4.1 Navigation

The vehicle’s navigation was carried out using the teach and repeat algorithm
[4], primarly tested on the SHARK robotic base [3]. This method allows the
vehicle to learn a specific path during the teaching phase and, subsequently, be
able to repeat it. After teaching the desired navigation path to the vehicle, it
will traverse the environment following the learned route.

During this navigation period, the vehicle will also run ArucoSLAM. This
integration enables robust navigation, ensuring that the vehicle attempts to cor-
rect the accumulated errors throughout the navigation process.
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4.2 Environment

In this work, a simulated environment representing a factory was used, where
a vehicle operates autonomously based on paths previously taught to it. The
simulated environment offers the advantage of repeatability, as test batches can
be run repeatedly and in a controlled manner without any limitations, which
facilitates the development and validation of SLAM algorithms.

The idea behind using this environment involves the development of a robot
capable of autonomously navigating a factory, transporting loads between the
docking stations within the environment.

4.3 Vehicle

The vehicle used in this simulated environment relies solely on a monocular
camera, which provides all the necessary data for navigation and environment
mapping. However, it is also equipped with a stereo camera, an IMU (Inertial
Measurement Unit), and a lateral monocular camera, which were not used during
the experiments

4.4 Fiducial Tags

The markers will be placed at strategic points in the environment, specifically
at the vehicle’s parking docks. The ArUco markers will be generated using an
algorithm that follows the steps described below:

1. Generation of ArUco PNGs: Initially, the ArUco markers will be gener-
ated as PNG files. These files contain the marker images, which will later be
positioned in the environment.

2. Creation of the .json file: After generating the PNGs, a file in .json
format will be created to store the position and orientation information of
each ArUco in the simulated environment, represented by the set M = {m}.
Each marker m is described by:

– s: the length of the marker’s side.
– M ∈ SE(3): the pose of the marker.
– xi ∈ R3, i = 1, . . . , 4: the coordinates of the four corners of the marker,

defined with respect to the center of the marker.

3. Generation of the .sdf file: Finally, the .json file will be used to generate
a .sdf (Simulation Description Format) file, which will include all ArUco
markers in the desired positions and orientations within the simulated world.

This process makes it easier to position the markers accurately and automat-
ically, facilitating the creation of diverse and realistic scenarios, which helps in
running test batches for the algorithm.
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4.5 Detection of ArUcos

To detect ArUcos, the OpenCV library was used. However, although it helps with
the detection and identification of the markers, it does not provide methods
for locating them in the world. Therefore, since ArucoSLAM uses the ROS2
middleware, the use of TF2 was necessary to correct the location of the ArUcos
in the world, as well as the robot’s position in the world based on them.

The ArUco detection step within OrbSLAM3 was based on the ArUco detec-
tion module of the OpenCV library, configured to recognize a specific predefined
marker dictionary. Furthermore, a wrapper was developed in ROS2 to handle
the detection and send the information to OrbSLAM3, simplifying the detection
process.

Figure 1 shows an ArUco marker being detected simultaneously as Orb-
SLAM3 extracts keypoints from the current frame, demonstrating that both
processes can operate concurrently without issues. It is worth noting that the
two images appear different, since OrbSLAM3 processes grayscale images and
adjusts the camera resolution to better detect keyframes.

Fig. 1: ArUcos detected by OrbSLAM3

The robot’s localization based on ArUco markers for loop-closure and re-
localization was performed using detection and homogeneous transformations.
The resulting position of the robot in the world, based on ArUco detection, is
sufficient for SLAM requirements.

4.6 Ground Truth

Ground truth is the actual reference used to evaluate the accuracy of algorithms,
if the robot follows a path, the ground truth will contain the exact route taken
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by the vehicle. Therefore, by using the teach and repeat algorithm it is possible
to obtain the exact path the robot follows during its route. This allows for a
comparison between ArucoSLAM and ORBSLAM3.

Furthermore, Figure 2 shows in red the absolute path followed by the robot.
Moreover, Table 1 shows the results obtained from the comparison between the
robot’s ground truth position and the position estimated by the ArucoSLAM
localization method.

Fig. 2: Ground Truth of the path followed by the robot

Table 1: Comparison between ground truth and ArucoSLAM position
Axis Ground Truth ArucoSLAM Absolute error

x 0.048 0.040 0.008
y 0.114 0.093 0.021
z 0.301 0.301 0.000
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4.7 Experiment 1 - Mapping Using ArUcos and Relocalization

The experiment carried out to validate ArucoSLAM involved running the nav-
igation along the path previously taught to the robot, but with markers added
throughout the environment being navigated.

The map is generated from the keyframes detected along the path and the
keypoints identified in each frame. As shown in Figure 3a, in green we have the
path the robot believes it followed, in black the keypoints that were saved by
the SLAM, and in red the keypoints currently being detected by the camera.

(a) Mapping with ArUcos and relocal-
ization

(b) Keyframes acquired along the trav-
eled path

Fig. 3: Experiments with ArUcos and Relocalization

In Figure 3b, the keyframes acquired during the navigation path are shown
in blue. These keyframes are represented on the map by triangles indicating the
camera’s field of view, where the blue triangles correspond to keyframes saved
in DBoW2. It is worth noting that the image might appear somewhat blurred
since the corridors navigated by the vehicle are very close together, causing the
keyframes from both corridors to overlap on the map.

However, it can be observed that the saved keyframes follow an ordered
direction, aligning with the format of the path traveled, which was defined by
the ground truth. In Figure 3a, the result of the generated map is shown, with
the keypoints represented as black dots and the traveled path as a green line.
This illustrates that the green path generated by ArucoSLAM closely resembles
the one defined by the ground truth, even though it may not be completely
optimized.
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4.8 Experiment 2 - Mapping with ArUcos in the Environment
Without Relocalization

In this experiment, the markers remained in the environment where the robot
would navigate. However, only OrbSLAM3 was running. The markers were left
in place to provide the same visual richness in the environment as in the previous
experiment, but without using the markers for relocalization accuracy.

In Figure 4b, the blue keyframes acquired during the navigation path are
shown once again. It is also evident that the keyframes do not follow an ordered
direction nor the path defined by the ground truth, indicating that relocalization
based on OrbSLAM3’s keypoints was not successful. Furthermore, in Figure 4a,
we see the resulting map showing the keypoints extracted during the route. This
shows that the robot was able to traverse the designated path.However, at the
upper part of the trajectory, where a turn requiring relocalization occurs, it
ended up getting lost and was unable to generate the map with the expected
results.

(a) Mapping with ArUcos without re-
localization

(b) Keyframes acquired along the trav-
eled path

Fig. 4: Experiments with ArUcos and without Relocalization

4.9 Experiment 3 - Mapping Without ArUcos

In the mapping without the aid of any ArUco markers, the robot was able to
navigate reasonably well up until the previously mentioned curve. However, due
to a lack of visual information, it ended up getting lost and was no longer able to
find any existing keyframes. Consequently, it lost track of the predefined route,
resulting in an empty and information-less map.
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4.10 Discussion

Based on the visual results, which illustrated each of the experiments conducted,
it can be assumed that ArucoSLAM ends up generating a map similar to the
proposed ground truth, as it benefits from the use of ArUco markers to assist
with loop closure and relocalization.

It is also noticeable how important visual enrichment is in environments
with limited visual information, such as simulated ones, where there is a lack of
shadows and little texture on walls and objects.

However, since OrbSLAM3 is currently considered the state-of-the-art in Vi-
sual SLAM, it is worth noting that the experiments were conducted in a ho-
mogeneous environment, deliberately designed to expose the weakest aspects of
OrbSLAM3, and to show that ArucoSLAM can help address those limitation.

5 Conclusion

The proposed work aimed to develop a system capable of enhancing the Vi-
sual SLAM performance of OrbSLAM3 through the integration of fiducial tags,
seeking improvements in the maps generated by the developed algorithm. This
approach focuses on improving relocalization and loop closure, especially in sce-
narios where traditional keypoints present limitations.

The experiments conducted demonstrated that the use of fiducial markers can
provide estimated information about the robot’s position, complementing the
estimates generated by OrbSLAM3’s keyframes. This integration helped correct
deviations in the estimated trajectory, bringing the system closer to the ground
truth. However, there are still technical aspects to be refined to solidify the
practical application of the proposed method.

For future work, it is necessary to fully implement the fusion of fiducial
marker data with keyframes in the DBoW2 database, so that marker prioritiza-
tion occurs dynamically and is optimized in real time. Additionally, implement-
ing the method in Stereo format and integrating the IMU could further improve
the obtained results.

Therefore, the anticipated advancements in the continuation of this work
will contribute to the development of a reliable, efficient, and adaptable visual
SLAM system, applicable to various fields such as mobile robotics, autonomous
vehicles, and navigation in complex environments.
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