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Abstract—Weeds represent a significant challenge to agri-
culture, making their accurate detection essential for minimizing
crop losses and ensuring sustainable farming practices. Tradi-
tional weed detection methods often fail to adapt to changing con-
ditions, making integrating advanced technologies like robotics,
computer vision, and deep learning crucial. AI-driven robotics
in precision agriculture enables real-time weed identification
and targeting, reducing herbicide use while enhancing farming
efficiency and promoting more sustainable practices. However,
these methods depend on diverse and high-quality data. Taking
the aforementioned into account, in this work, we propose i)
a novel approach to generate synthetic data for weed detection
using a combination of diffusion models and clustering techniques
and ii) an impact analysis of the use of synthetic data during the
training process of learning models for weed detection operation.
The methodology integrates IP-Adapter and SeeCoder models
with a DINOv2-based clustering algorithm, enabling efficient
synthetic data generation without requiring network retraining
or complex prompt engineering. Experiments conducted on the
CottonWeedYolo dataset demonstrated the effectiveness of the
proposed method. Our synthetic images achieved a CLIP Mean
Maximum Discrepancy (CMMD) score of 1.317, very close to the
1.153 images generated with DreamBooth, while requiring sig-
nificantly less computational resources. Incorporating synthetic
images using YOLOv8 improved mAP across all species, with the
best performance observed when combined with a balanced real
dataset. The results demonstrate that synthetic data, although
valuable as a complement, do not replace the need for real data,
highlighting the importance of quality over quantity in developing
robust detection networks.

Index Terms—Synthetic Data Generation, Diffusion Models,
Weed Detection, Computer Vision, Agricultural Robotics.

I. INTRODUCTION

In the face of global climate change and rapid population
growth, agriculture ensures food supplies. The sector is under
increasing pressure due to rising temperatures, unpredictable
weather patterns, and extreme events such as droughts and
floods, further exacerbated by plant diseases, pests, and weed
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infestations [1]. To address these issues, adopting cutting-edge
technologies has become essential to optimize resource use
and ensure food security [2].

Weeds are unwanted plants that grow in areas where they
are not cultivated, usually competing with crops or ornamental
plants for essential resources such as light, water, nutrients,
and space. Weeds can hinder the growth of cultivated plants,
reducing productivity and, in some cases, even destroying
crops. In addition, many weeds can be difficult to control or
remove. They can emerge naturally in any environment and are
generally adapted to grow quickly and survive under various
conditions [3].

Traditionally, weed detection has relied on manual inspec-
tion and mechanical or chemical control methods, often labor-
intensive, time-consuming, and costly. Farmers and agricul-
tural workers visually identify weeds in the field, which
becomes increasingly challenging in large-scale farms where
precision and efficiency are critical. Additionally, manual
detection is prone to human error, as weeds can sometimes
resemble crops, making accurate identification difficult [4],
[5], as we can observe in Figure 1.

Fig. 1. Example of a plantation with the presence of weeds, emphasizing the
degree of difficulty in detecting the infestation. In the left figure, a plantation
with weeds is presented, while in the right figure, the weeds are highlighted.

These challenges highlight the importance of integrating
robotics, computer vision, and machine learning to improve
the accuracy and efficiency of weed detection, enabling more
precise and scalable solutions for modern precision agriculture
[6].

Considering the abovementioned, we propose a study of a
Dreambooth training method with an image clustering tool



based on DINOv2. Additionally, we will introduce a new
pipeline to generate data without the need to retrain the
network, without using prompts, and without relying solely
on the training data of the diffusion network. To validate our
approach, we conducted extensive experiments to evaluate hy-
brid training strategies, combining real and synthetic datasets.

The main contributions of our work are summarized as
follows:

• We propose a novel approach to generate synthetic data
for weed detection using a combination of diffusion
models and clustering techniques.

• We present an impact analysis of the use of synthetic data
during the training process of learning models for weed
detection tasks.

II. RELATED WORK

Synthetic data generation in agriculture is necessary to over-
come collection limitations and poor-quality data. Diffusion
models can create this data for applications such as pest
detection. This section reviews advances, applications, and
challenges in this context.

A. Deep Learning Applications and Challenges in Agriculture

Artificial intelligence is a tool that can optimize processes in
various fields, particularly agronomy. In this domain, reviews
such as [7] and [4] highlight both classical solutions and those
based on Deep Learning, which have been widely adopted
in the current industry. These technologies enhance precision
in crop monitoring, yield prediction, and detecting fertilizers,
diseases, and pests [3], [8].

However, a recurring challenge in agriculture is data ac-
quisition for training neural networks. The lack of data due
to high costs and complexity of acquisition, poor quality of
open-source data, highly specific scenarios, or variable reso-
lutions that negatively affect the network architecture makes
it difficult for robust model development [9]. Furthermore,
the generalization capability of networks is impacted by the
limited amount of available data [7].

For this reason, several studies seek ways to augment these
datasets. Early approaches involve complex data augmentation
methods, such as the one used in [10], which applies a trans-
parent image method over grass. However, these approaches
generally result in a significant amount of time spent and
require specialized personnel to perform these augmentations.

B. Diffusion Models for Synthetic Data Generation in Agri-
culture

Diffusion models have made significant strides in generating
high-quality synthetic images, becoming valuable tools for
database augmentation. For instance, DiffuseMix [11] focuses
on modifying tones, contrasts, and effects in base images,
while Effective Data Augmentation [12] generates diverse
variations within the same class. However, these models face
limitations due to their reliance on training datasets. Although
these datasets are extensive, they often lack specificity for cer-
tain species [13], which restricts their practical applicability.

One prominent approach is Dreambooth [14], which gener-
ates images based on a set of example inputs. Studies such
as [15] and [6] have utilized this model but with varying
outcomes. While [15] reported failures in generating plant
images, [6] achieved better results using a similar database
[16]. This variability can be attributed to Dreambooth’s nu-
merous adjustable parameters, which can lead to overfitting
[13] and the critical role of input image distribution in model
performance. Selecting a limited data set can reduce diversity
and create imbalances in the generated outputs [17].

To address these challenges, newer models like RIVAL
[18] and GDA [19] have been proposed. These models adapt
latent distributions to create more precise databases. However,
their applicability is limited by their reliance on specialized
architectures and pre-trained networks, which constrain their
flexibility. Another notable challenge is the use of prompts
for image generation. Slight prompt modifications can lead
to vastly different results [11], [20], highlighting the need
for more robust control mechanisms. Recent research, such
as [21], has explored replacing the CLIP architecture [22]
with visual inputs to improve control over generated features.
Similarly, [23] introduces an attention layer to precisely guide
the generation process, balancing control and visual quality.
These advancements underscore the need for more efficient
and accessible approaches to synthetic data generation.

C. Evaluation Metrics for Synthetic Data in Generative Mod-
els

The evaluation of synthetic data often relies on the Frechet
Inception Distance (FID) [24], which measures the discrep-
ancy between the feature distributions of real and generated
images. However, FID has several limitations. It assumes
that Inception-v3 embeddings follow a multivariate normal
distribution, an assumption that does not hold for the com-
plex outputs of modern generative models [25]. Additionally,
FID requires large sample sizes to produce reliable estimates
and fails to consistently reflect incremental improvements or
degradations in image quality [26].

To overcome these limitations, the CLIP-MMD Distance
(CMMD) has been proposed [25]. Using an RBF Gaussian
kernel, this metric combines CLIP embeddings with Maximum
Mean Discrepancy (MMD). Unlike FID, CMMD does not rely
on assumptions about data distribution, is computationally ef-
ficient, and effectively captures incremental changes in image
quality. Empirical studies have shown that CMMD aligns more
closely with human perception, making it a robust alternative
for evaluating modern generative models.

III. METHODOLOGY

A key question arises from the state-of-the-art analysis:
Can synthetic data effectively enhance deep learning training?
Studies like [15] and [6] yield contrasting results despite
applying similar methodologies to the same dataset, under-
scoring the need for a deeper investigation into methodological
influences and a standardized baseline for future research.



To address this, we propose a series of experiments to
assess method variability and establish a unified framework.
For consistency in comparisons, we adopt the [16] dataset,
previously used in related studies.

A. Synthetic Images Generation by DreamBooth Model

Synthetic image generation supports data augmentation
strategies. Here, we use diffusion models, which iteratively
denoise random noise based on learned distributions to pro-
duce high-quality images.

For our experiments, we adopt a diffusion-based approach
inspired by DreamBooth, which enables the generation of
class-specific images using a small set of reference images.
DreamBooth fine-tunes a pre-trained diffusion model to learn
the distinctive characteristics of each class, ensuring the pro-
duction of diverse and accurate synthetic samples. According
to [14], three to eight reference images per class are sufficient
to capture key features, making this an efficient method for
synthetic data generation.

However, one of the challenges in the synthetic image
generation process is the preparation of a high-quality ref-
erence dataset. A carefully curated and diverse set of images
is necessary to ensure the generation of accurate and varied
samples by the model.

B. Clustering based on the DINOv2 Algorithm

One of the main aspects of building an appropriate reference
dataset for training the image generation model is the cluster-
ing of images. Since training a Dreambooth model requires
between three and eight reference images per class, efficiently
clustering the images into manageable groups is a priority.
Typically, this process involves selecting images based on their
”similarity” [6].

However, this clustering has two main limitations: subjec-
tivity in determining image similarity and a loss of efficiency
in large datasets. These limitations can affect the quality and
utility of the generated data.

The DINOv2 proposal [27], designed for feature extraction,
combined with the K-nearest neighbors (KNN) for cluster-
ing, addresses the aforementioned limitations and clusters the
dataset into distinct groups. This approach promises higher
quality in forming groups, which is relevant for the subsequent
pipeline stages.

C. Enhanced Synthetic Data Generation

Based on the state-of-the-art analysis, we propose a method-
ology for automatic synthetic data generation that addresses
key challenges in data augmentation while reducing computa-
tional costs. Instead of training a diffusion model from scratch,
which is time-consuming and requires significant Video Ran-
dom Access Memory (VRAM), our approach leverages two
complementary methods: IP-Adapter [23] and SeeCoder [21].

IP-Adapter is a modification of the original diffusion model
architecture that enhances the attention calculation. This mod-
ification introduces an additional step where the model com-
pares the embeddings of guide images, improving the model’s

ability to generate images based on reference data rather than
textual prompts [23]. SeeCoder, on the other hand, extracts
visual features from an image, overcoming the vocabulary lim-
itations of text-to-image models by using images as prompts
instead of text [21].

The reason for combining these two approaches lies in their
complementary strengths. While SeeCoder extracts the visual
features of an image, it still suffers from certain limitations in
image generation, particularly in terms of alignment. Although
the visual prompt serves as a guide to generate unseen images,
there is often a gap between the generated result and the
original prompt. The images generated using SeeCoder may
lack visual realism and deviate significantly from the reference
image in terms of content and quality.

On the other hand, the IP-Adapter still faces challenges
related to prompt engineering, requiring significant time and
effort to identify the optimal prompt for effective data genera-
tion. The trial-and-error process of selecting the right words to
guide the model can make it difficult to create diverse classes,
potentially breaking synthetic data generation.

We hypothesize that both models improve the generation
process by addressing different limitations. SeeCoder enhances
visual feature extraction, enabling more diverse image gener-
ation. At the same time, the improved attention mechanism
in IP-Adapter helps align the generated images with the de-
sired output, enhancing realism and relevance. Our generation
model leverages both and can achieve better results without
requiring extensive, prompt engineering or additional training.

Figure 2 demonstrates how both IP-Adapter and SeeCoder
are used together with guide images to enhance synthetic data
generation. The figure illustrates how the embeddings from
the guide images are processed through the modified attention
mechanism of IP-Adapter and the visual feature extraction
of SeeCoder, resulting in more accurate and realistic image
generation.

Fig. 2. Combined use of IP-Adapter and SeeCoder with DINOv2-clustered
guide images for enhanced synthetic data generation.

D. Experimental Setup

The experiments were conducted using the YOLOv8 detec-
tion network across all configurations to ensure architectural
consistency. The models were trained on the CottonWeedYolo
dataset [16], which consists of 4150 images distributed across



14 weed species: Crabgrass, Eclipta, Goosegrass, Morning-
glory, Nutsedge, PalmerAmaranth, Prickly Sida, Ragweed,
Sicklepod, Spottedspurge, SqurredAnoda, Swinecress, Water-
hemp, and Purslane. This dataset was partitioned into 80%
training, 10% validation, and 10% testing subsets. The models
were trained for 10 epochs with an image size of 640, using
an automatic batch size determined by the Ultralytics package
on an RTX 4060TI GPU. The inherent class imbalance in
the original dataset poses significant challenges for detection
models. Seven experimental configurations were designed to
address this and systematically evaluate the role of synthetic
data in mitigating the imbalance and enhancing detection
performance.

• Experiment 1: Baseline training using the original im-
balanced dataset without modifications.

• Experiment 2: Add 300 synthetic images per class using
DreamBooth, as recommended in [20], to ensure that all
classes are enhanced equally.

• Experiment 3: Add synthetic images proportionally to
correct the initial imbalance, generating a varying number
of synthetic images for each class based on their original
distribution, ensuring that all classes end up with the same
total number of images.

• Experiment 4: Reduce the number of images in the
classes more represented to balance the proportions in
the original dataset without adding synthetic data.

• Experiment 5: Add 300 synthetic images per class
generated by the proposed method to balance the dataset.

• Experiment 6: Reduce the original dataset to 10%,
without any addition of synthetic images, to evaluate the
performance on a smaller, real-world dataset.

• Experiment 7: Use the 10%-reduced dataset, augmented
with 300 synthetic images per class, to assess the impact
of synthetic data on model performance when using a
limited real dataset.

In all experiments, the synthetic images generated were fil-
tered and semi-automatically labeled using AnyLabeling [28],
which incorporates state-of-the-art object detection and seg-
mentation algorithms. This tool includes a SAM2-based [29]
bounding box tool, which, with manual reference points, gen-
erates both bounding boxes and segmentation masks—features
that could be beneficial for future tasks.

IV. RESULTS AND ANALYSIS

This section provides a comprehensive analysis of the
proposed approach, including both qualitative and quantitative
evaluations. It begins with a quantitative and qualitative assess-
ment of the quality of the generated synthetic images, followed
by a qualitative comparison of different dataset formation
strategies. Finally, the computational cost of the proposed
method is qualitatively analyzed.

A. Synthetic data evaluation

The quality of synthetic images generated with Stable Dif-
fusion was evaluated using the CMMD metric, which provides
a robust and reliable assessment [25]. Based on CLIP model

embeddings and MMD distance, CMMD enables an accurate
analysis of differences between the real and synthetic image
distributions and is used in this work for this comparison.
Table I presents the results obtained for different synthetic
image generation methods, where * represents the prompt
”crop specie” and specie each weed species name used.

TABLE I
CMMD METRIC FOR DIFFERENT METHODS.

Methods CMMD (↓)
Only SeeCoder [21] 2.314

Only IP-Adapter∗ [23] 1.647
Dreambooth∗ [14] 1.153

Ours 1.317
∗Models trained with a ”crop specie” prompt.

The CMMD metric assesses the proximity between real
and synthetic image distributions, where lower values indicate
greater similarity. DreamBooth achieved the best performance
with a CMMD of 1.153. Our method, which combines the
capabilities of IP-Adapter and SeeCoder to generate synthetic
images, is closely followed by 1.317. Unlike DreamBooth, our
approach does not require retrained data, prompt engineering,
or computationally intensive training.

Individually, SeeCoder and IP-Adapter obtained CMMDs
of 2.314 and 1.647, respectively. By integrating both, our
method significantly improves synthetic image generation,
enabling high-fidelity outputs with minimal setup and no need
for specialized hardware. With only a 0.164 difference from
DreamBooth, our solution offers a practical, cost-effective
alternative for rapid synthetic image generation.

Regarding computational cost, our method can be executed
even on devices with just a CPU or minimal GPU require-
ments, such as 2GB of VRAM. In contrast, DreamBooth,
which achieves the second-best quality in synthetic image
generation, requires 8GB of VRAM for training. Additionally,
our execution time is nearly identical to the IP-Adapter.

Figure 3 presents a qualitative analysis of four species from
the CottonWeedDet12 dataset [16]. The first column shows
the original images, while the following rows display synthetic
images generated by different methods. We applied a Dinov2d-
based clustering tool to group visually similar images, forming
five clusters when necessary.

The results highlight SeeCoder’s inconsistency, as it often
introduces artifacts despite capturing general shapes and tex-
tures. The IP-Adapter improves visual quality but produces
stylized, cartoon-like outputs. DreamBooth performs best,
accurately capturing shape, texture, and realism. This success
is attributed to leveraging similar images during training,
allowing the model to learn the distinctive characteristics
of each group. Our method achieves high realism, faithfully
reproducing key image features while outperforming SeeCoder
and IP-Adapter. Though slightly stylized, it remains a strong
alternative to DreamBooth in terms of quality and fidelity.

Moreover, it is important to emphasize that synthetic images
are not guaranteed to preserve all taxonomically significant



traits of the species, as sometimes the models can just simplify
them.

Fig. 3. Qualitative Comparison of Image Generation Methods for Cotton-
WeedDet12 Species (*indicates prompt-based methods).

B. Evaluation of Dataset Formation for Detection

In the quantitative analysis, we evaluated the results ob-
tained in all seven experiments for each class. In this assess-
ment, the results were expressed through quantitative metrics
that indicate the accuracy of the enhancement process. The
metric used was the mean Average Precision (mAP), which is
widely used to measure the performance of object detection
models. The mAP was calculated for each class individually,
considering an Intersection over Union (IoU) threshold of 0.5
and as the average of the Average Precisions (APs) of all
classes.

Figure 4 presents the mAP values obtained in each experi-
ment, comparing the impact of different training configurations
on the performance of the YOLOv8 model. Experiment 1
shows low performance compared to its counterparts using
synthetic data. Experiment 2 achieves the best results across
multiple classes, although it exhibits overall instability in the
model with low precision for some species. However, these
shortcomings are minimal. In Experiment 3, despite adding
more synthetic images, the model’s overall performance de-
creases. This can be explained by the fact that some species
have more synthetic images than others to balance the entire
dataset.

On the other hand, Experiment 4 does not include synthetic
images and shows significantly lower overall precision. How-
ever, when comparing Experiment 3 and Experiment 4, it is
observed that, despite its lower performance, the model with
synthetic images performs better overall. Finally, Experiment
5 stands out as the best on average, demonstrating the highest
overall stability without sacrificing the performance of certain
species in favor of others, as observed in Experiment 2.
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Fig. 4. mAP values obtained in the first five experiments, analyzing the impact
of different training configurations on the performance of the YOLOv8 model
for detecting 14 weed classes.

In comparing the results of Experiments 6 and 7, as shown
in Figure 5, it is observed that number 7, which has more
data (even if artificially generated), contributes to improving
the model’s overall precision. In Experiment 6, the dataset
used is very limited, resulting in poor performance, indicating
that the model failed to understand the data properly. On the
other hand, with synthetic images, the model demonstrates
some learning. However, asserting that the model generalizes
well is still impossible, as the dataset remains quite restricted.

Thus, it can be concluded that synthetic data is useful but
does not replace the need for real data, which should be as
diverse as possible. The combination of synthetic and real data
is essential for developing robust networks, making it crucial
to prioritize quality over quantity in real data collection.
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Fig. 5. Comparison of mAP between Experiments 6 and 7, highlighting the
impact of adding synthetic data on the detection accuracy of the 14 weed
classes with the scarcity of real data.

V. CONCLUSION

This study demonstrates the effectiveness of synthetic data
generation in addressing the challenges of training datasets



for weed detection systems. Dreambooth achieves slightly
better performance in generating synthetic images (CMMD
of 1.153 compared to our 1.317). Our proposed pipeline
eliminates the need for retraining, specialized hardware, or
complex prompt engineering in the image generation process.
Qualitative analysis confirms the ability of our method to
generate highly realistic images. Through extensive experi-
mentation with different dataset formations, we found that
integrating synthetic images (generated by our method) and
real data (Experiment 5, with 300 synthetic images per class)
achieved the best overall stability and performance across all
weed species. Although our image generation method has a
higher computational cost (8.95s versus Dreambooth’s 3.37s),
this trade-off is justified by eliminating expensive training
processes and reducing the need for manual data collection.
These findings represent a significant advance in synthetic
data generation and optimal dataset formation for agricultural
applications. In particular, they pave the way for the next
stage in developing robotic weed detection systems, which
could significantly enhance the efficiency and sustainability of
modern farming practices. By integrating synthetic data with
robotic systems, we can further improve weed management
solutions’ scalability, precision, and adaptability, making it a
crucial step toward more sustainable agriculture.
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