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Abstract—In the service robots field, a mobile robot must be
able to navigate and repeat previously defined paths. This paper
aims to develop a technique capable of teaching and repeating
(T&R) a path taken by a mobile robot. We evaluated using a
differential robot. The developed system is integrated with the
ROS framework and uses the mobile base, which is built with
self-balancing scooter components. When changes need to be
made in the environment, a user must generate a new path by
teleoperating the robot, and the system can repeat new paths
autonomously. The proposed approach consists of using Bézier
curves to represent the paths taken by the user. The proposed
method implements a T&R technique to navigate a mobile robot.
Results show the worst maximum average of percentage error
(MPE) using this method was only 1.361% in adapting the Bézier
curve to the points where the robot was taught, satisfactorily
representing the path. In the repeating process, the worst MPE
was 9.983%.

Index Terms—Teach and repeat, Autonomous Mobile Robot,
Planning route.

I. INTRODUCTION

With technological advancements, service robots are uti-
lized in new daily contexts, such as surveillance, inspection,
restaurants, and logistics. Their usage spans from residences
to industries and hospitals, exemplified by Enchanted Tool’s
Mirokai1 . Various platforms like Pal Robotics’ TiaGO2 , Toy-
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ota’s HSR3 , and Softbank’s Pepper4 offer a range of ca-
pabilities, each focusing on a specific market segment like
social interaction, home care, or business. A robot capable of
performing tasks such as transporting objects within a build-
ing enables humans to concentrate on higher-level activities,
particularly in workplace settings. Thereby alleviating staff
burden [9].

One important capability for service robots is autonomous
navigation, which involves avoiding collisions and finding the
optimal path to perform their tasks. Path planning is a fun-
damental aspect of mobile robotics in this context, involving
determining how to navigate to a target goal within a known or
unknown environment. The algorithm must consider variables
such as dynamic obstacles and static environment features.
Although there are multiple possible approaches to path plan-
ning [1], one widely used method in known environments
is the Dijkstra algorithm [3]. It calculates the shortest path
to a point in space. However, while determining the shortest
possible path is often the best solution, in environments with
high dynamics and predetermined goal positions, a predefined
path may also be an effective solution.

In addition to path planning, local navigation is equally
important in mobile robotics, and the dynamic window ap-
proach (DWA) [3] local planner is widely adopted for this
purpose. Integrated within the ROS Navigation Stack, this
planner enables to navigate the environment autonomously.

3https://global.toyota/en/detail/8709541
4https://us.softbankrobotics.com/pepper



Despite their wide application, there are some limitations to
saving and repeating a predefined path. While the navigation
stack [6] [5] can be used to use each point traversed by the
robot as a future objective, creating a continuous curve is
important but challenging due to the stack’s inability to receive
a predefined path.

This paper proposes a teach-and-repeat (T&R) technique
based on Bézier curves applied to a low-cost platform [2]
with odometry and an inertial measurement unit (IMU). The
platform uses an Extended Kalman Filter to fuse both sensors
to estimate the robot’s pose. The T&R technique involves
two main phases: in the teaching phase, an operator manually
guides the robot to record and learn the path. In the repeat
phase, the robot autonomously executes the task based on the
learned data. The entire path is represented by a Bézier curve,
which allows for precise path following. This approach ensures
that the robot can replicate the taught paths.

II. RELATED WORK

This section provides an overview of existing research
and relevant developments. It explores previous work and
approaches in mobile robotics, particularly focusing on navi-
gation, path planning, and robot localization methods.

A. Teach and Repeat for Mobile Robots

The work developed by [8] presents a T&R navigation sys-
tem that utilizes sliding-mode control to address uncertainties
such as sensor noise and wheel-terrain interactions. The system
relies on odometry and a monocular camera for navigation.
While this approach has demonstrated a good performance in
trajectory error and stability, achieving an average error of less
than 5cm, it differs from our approach by incorporating camera
data, adding complexity and reliance on visual input that is
not present in our method. In contrast, our work exclusively
uses odometry and IMU readings, simplifying the system and
reducing reliance on external environmental features.

Another application developed by [14] covers the automa-
tion of logistical tasks for small batches and flexible produc-
tion processes. The emphasis is on creating intuitive and easy-
to-use systems, allowing unskilled workers to naturally instruct
transport systems. To this end, the authors present a mobile
robot with a laser scan to match the robot relative to a taught
trajectory, avoiding needing a globally consistent metrical
map. This reduces setup complexity and the potential errors
from grid maps. Using the Pioneer robot based on odometry,
the maximum error was 40%, while using the omniRob robot,
the maximum error was 15%. Instead, our work represents
the path using Bézier curves, which allow for smooth and
continuous path representation.

B. ROS Navigation Packages

The navigation stack is widely used in the robotics field and
is a software set that enables robots to navigate in unknown
and known environments autonomously. It includes global and
local planners, cost maps, and localization, allowing the robot
to move on the map. Based on this tool, users can specify a

goal for the robot to reach. However, while the user defines
the goal, the planner autonomously determines the robot’s path
to reach that goal. In other words, users may not have direct
control over the exact path the robot executes because it is
dynamically determined by the planner based on real-time
environmental conditions and constraints.

There is a function available that enables the robot to
follow waypoints, allowing the user to specify points the robot
must reach to conclude that determined path. However, in
the same way, the users do not define the entire path or
how the path is executed. Instead, the system autonomously
determines the most efficient route and execution strategy
based on the provided waypoints, optimizing the robot’s real-
time trajectory.

To address this challenge, the move base flex package
was developed [11]. This package enables users to convert
a set of coordinates into a path and execute them using the
mbf msgs/GetPath and mbf msgs/ExePath actions. However,
this method does not treat the path as a curve nor provide
a parameterized curve or enable the curve to avoid obstacles
while preserving its essential characteristics.

III. METHOD

This section presents the T&R process used to enable the
robot to navigate along a predefined path autonomously. The
method is divided into two main stages: the teaching phase, in
which the robot’s 2D coordinates are recorded and stored as it
is manually guided through the desired path, and the repeating
phase, in which the robot uses this information to replicate the
path autonomously.

The proposed method adapts a Bézier curve to represent
the taught path, generating control points that define the curve
corresponding to the path taken. During the repeating phase,
n equidistant reference points are established along the Bézier
curve, which are used with the local planner’s paths. The robot
continuously evaluates the set of points, calculates the cost of
following each possible path, and selects the local planner
path with the lowest cost to guide its movement. As the robot
advances and reaches a reference point on the Bézier curve,
that point is marked as reached, and a new point is added to
the end of the sequence of n points. This process is repeated
until the robot has successfully followed the entire path.

A. Teaching phase

The teaching process involved the development of the
teaching node, responsible for monitoring the ROS topic
‘/robot pose ekf/odom combined’ provided by the Extended
Kalman Filter (EKF) package. This package performs fusion
between odometry and IMU data, returning information in
the message type PoseWithCovarianceStamped. As the robot
moves, the ROS node captures details such as its spatial
position (x and y coordinates) and orientation. The x and
y coordinates data are then stored in separate files, each
representing a distinct path taken by the robot. This file
structure enables users to select which path the robot should
execute.



B. Fitting and generating the Bézier curve

This step is based on the algorithm PiecewiseG1BézierFit
[4], which aims to fit a curve from certain points. This algo-
rithm, originally written in Matlab source code, was adapted
for Python5 using NumPy6 to replace certain functions present
in Matlab. This portability was intended to facilitate integration
with ROS and its efficiency.

The importance of the fitting method for the work is its
capability to fit a Bézier curve from a set of data points. Figure
1 illustrates the fitting of Bézier curves to a dataset. [4] offers
the “globally optimized only” fitting method, which defines
only a single Bézier curve for the entire path. Despite being
a simpler method, it is effective and suitable for our method.

Fig. 1. Fitting a Bézier curve to a dataset using the PiecewiseG1BézierFit
algorithm. The figure shows the original data points (dots), the initial guess
with 3 knots (crosses), and the newly calculated control points (circles) that
define the final Bézier curve (smooth line). This approach optimizes the curve
fitting process, allowing the curve to closely follow the shape of the data while
maintaining smoothness and continuity [12].

In addition to the benefits mentioned, Bézier curves provide
parameterizing paths with several advantages, such as being
easy to represent mathematically, having smooth and control-
lable curvature properties, and being able to be adjusted to
different control point configurations. This makes the planning
and navigation process more flexible, allowing it to adapt to
different situations and scenarios.

C. Generating local planner paths

The local planner is based in the DWA local planner,
generating lines to possible local paths for the robot to emulate
a future behavior. Figure 2 illustrates how this process works.

Once the Bézier curve is adapted, it acts as a base to im-
plement the repetition of the taught path. The method chosen
for this work generates local paths for the robot. This process
was essential for the robot to perform the repeat path stage.
This involves simulating the mobile robot’s future behavior
by calculating its kinematics using the Jacobian matrix, which

5Python programming language https://www.python.org/.
6NumPy library https://numpy.org/

Fig. 2. Demonstration of the Dynamic Window Approach (DWA) applied to a
mobile robot. In the figure, the robot (in blue) calculates potential trajectories
(dotted lines), considering its kinematics and the obstacle constraints (in red)
in the environment. The robot simulates future movements to determine the
best path to follow, avoiding collisions and ensuring safe navigation. The
potential collision point is shown in black. [7]

provides information on how it behaves when performing.
Based on it, we create local paths that are in line with the
robot’s characteristics.

D. Calculating differential robot kinematics

To generate the local paths according to the robot’s kine-
matics, some variables must be considered: tyre radius,
which represents the wheel’s radius, and robot yaw, which
represents the robot’s yaw angle [10].

fl0 = tyre radius · cos(robot yaw) (1)

fa0 = tyre radius · sin(robot yaw) (2)

Using the derived equations, 1 and 2, the Jacobian matrix
is formulated as a 2 × 2 matrix, Eq. 3. This matrix relates
the robot’s linear velocities in the X and Y directions and its
angular velocity with the wheel velocities.

J =

[
fl0 0.0
fa0 0.0

]
(3)

Thus, generating n curves in the local planner was possible
according to the robot constraints. The operator can define the
number of local paths, as can the distance between the points.
With this method, we define the best local path for the robot
based on the situation at the time. Figure 3 shows the local
paths, with each curve being the vertical set of points.

Before publishing the robot’s velocity, the robot’s kine-
matics should be considered. The mobile base operates as
a differential drive system. The following equations describe
how to apply the velocity commands to the left 4 and right 5
wheels:

vleft = vlinear − vangular ×
dbtw wheels

2
(4)

vright = vlinear + vangular ×
dbtw wheels

2
(5)



where vlinear represents the linear velocity command and
angle is the angular velocity command. dbtw wheels denotes the
distance between the two wheels.

Once the velocities for the left and right wheels are deter-
mined, the robot’s overall linear and angular velocities can be
computed as follows: equations 6 and 7.

vlinear =
vleft + vright

2
(6)

vangular =
vright − vleft

dbtw wheels
(7)

These equations provide a framework for calculating the
robot’s velocity based on the desired linear and angular
velocities and the physical characteristics of the differential
drive system.

E. Defining the best local path

To define the best local path to perform, the system calcu-
lates the cost of each local path to repeat the predefined path.
This calculation involves comparing the robot’s actual position
about the reference point with the position predicted in the
corresponding local path. The first reference points on the
Bézier curve have higher weights (weight = number of points),
and each point is subtracted - 1 from the weight. Hence, the
points closest to the mobile robot significantly influence local
path selection decisions. This ensures the robot considers the
closest points more important during the repeating process.
Figure 3 shows the local paths.

Fig. 3. Visualization of the local planner’s possible paths considering the
robot’s dynamic limitations. The blue lines represent all potential paths that
the robot could take. Among these, the yellow path is selected for execution,
as it has the lowest cost. This cost is determined by weighing the robot’s
actual position relative to the predefined Bézier curve, emphasizing the points
closer to the robot.

F. Repeting the path

As the robot moves along the path, it constantly monitors its
proximity to the nearest reference point on the Bézier curve.
In the same way, the reference points on the local paths are
also equidistant from each other and defined in a set of n
points. When the distance between the robot and the nearest
reference point falls below a predefined threshold, that point
is considered to have been reached by the robot.

The distance between the robot and the objective point
is calculated using the Euclidean distance, Equation 8 to
determine whether the vehicle has reached its goal. A threshold
is set, and the objective is considered completed if the distance
falls below this limit.

dist =
√
(objx − posx)2 + (objy − posy)2 (8)

• dist: Euclidean distance between the target point and the
current position.

• objx, objy: x and y coordinates of the goal point.
• posx, posy: x and y coordinates of the current position.

The method then updates the reached reference point, re-
moves it from the list of n points, considers its subsequent one
the closest point to reach, and adds a new point at position n
+ 1.

With our method, we have n equidistant reference points on
both the Bézier curve and the local paths, and as the points are
used up, the n reference points move along the Bézier curve
until there are no more possible points. This method allows
the robot to progress gradually and systematically along the
Bézier curve as the reference points are reached and replaced.
Figure 4 demonstrates the logic developed for the method.

Fig. 4. Flowchart illustrating the repeating stage using Bézier curves and the
Dynamic Window Approach.



IV. EXPERIMENTAL ENVIRONMENT

The experiments were conducted in indoor environments,
typically found in offices, universities, and hospitals, focusing
on corridors that service robots would commonly navigate.
Figure 5 illustrates the paths used in these experiments. These
spaces are often characterized by narrow corridors connecting
various rooms, laboratories, and offices, providing a realistic
scenario for testing the robot’s capabilities. The design of the
experimental paths was inspired by the work of [8], [13], and
[14], which used similar path shapes to generate the teach and
repeat results for mobile robot navigation systems.

Fig. 5. Environment floor plan used for the experiments. The paths marked
as A, B, and C represent different paths to repeat.

The experimental paths included three distinct types:
• Path A: A circular path designed to test the robot’s

performance in continuous turns, which is uncommon in
regular service robot operations but useful for testing the
algorithm’s limits.

• Path B: An eighth-shaped path, which, similar to the
circular path, is unusual for service robots but serves as a
benchmark for testing the system’s resilience to complex
trajectories.

• Path C: A corridor navigation path representing a more
realistic scenario that a service robot might encounter in
real-world environments.

V. RESULTS

This section presents the results of the experiments on the
three paths described in the previous section. Each path was
experimented with using the same mobile base and parameters,
with three repetitions per path, to ensure consistency. Table
I consolidates the experimental results, including the fitting
error, repeat mean percentage error (MPE), and the time taken
to complete each path.

The mean percentage error (MPE) between the planned and
executed paths was calculated to evaluate the accuracy of the

Path Distance Experiment Fit error Repeat MPE Time

A 10.841m
1

0.477%
5.748% 1min04sec

2 6.600% 1min02sec
3 6.219% 1min02sec

B 23.418m
1

1.361%
9.983% 2min07sec

2 9.190% 2min14sec
3 9.814% 2min08sec

C 39.210m
1

0.155%
0.836% 3min17sec

2 0.783% 3min19sec
3 0.783% 3min19sec

TABLE I
COMPARISON OF RESULTS FOR DIFFERENT PATHS TESTED UNDER

VARIOUS CONDITIONS.

paths. The MPE is computed by determining the minimum
distance between each point on the executed path and the
closest point on the planned path. These minimum distances
are averaged to give the mean error, denoted as Dmin. This
average error is compared to the mean distance of the points on
the planned path from the origin, denoted as Dref , providing
a normalized measure of error as a percentage:

MPE =

(
Dmin

Dref

)
× 100 (9)

This metric is particularly useful because it provides a
relative measure of how closely the executed path follows the
planned route, regardless of the scale of the path.

• Path A repeating results: Path A, the circular path,
yielded an average repeat MPE of 6.189%, with the worst
case being 6.219% and the best 5.748% (see Figure 6).
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Fig. 6. Results of the three experiments on the circular path.

• Path B repeating results: In Path B, the eighth-shaped
path, the average repeat MPE was 9.662%, with the worst
case reaching 9.983% and the best case 9.190% (see
Figure 7).

• Path C repeating results: Path C, which simulated
corridor navigation, produced the lowest repeat MPE,
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Fig. 7. Results of the three experiments on the eighth-shaped path.

averaging 0.766%. The highest error was 0.836%, while
the lowest was 0.679% (see Figure 8).
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Fig. 8. Results of the three experiments on the corridor path.

VI. CONCLUSIONS

This work developed a method based on Bézier curves that
implement the T&R technique for path planning in a low-cost
mobile base. The system involves a user teaching a differential
drive robot by tele-operating or manually guiding it along a
specific path. This enables the mobile robot to replicate the
same path in a real-world environment appropriate for service
robots.

In the method implementing Bézier curves, adapting the
curve to the points traveled by the mobile robot showed
excellent results, with the worst error recorded in experiments
being only 1.361%

The results were positive, considering the experiments used
a simple robotic platform, only providing odometry and IMU
sensors. These sensors provide accumulation errors that can
cause problems during the T&R process, although the maxi-
mum MPE was 9.983%.

From the research and development of this work, it was
possible to implement the T&R technique in the mobile
robot. This technique enables the robot to learn a path and
autonomously repeat it. Utilizing the odometry and IMU data

available from the platform represents a possible feature of the
navigation stack.

Future work could explore using Bézier curves with multiple
segments or Bspline for greater path adaptability and dynamic
adjustments during navigation. In addition, integrating a lo-
cation system would increase the reliability of the data and
support the implementation of the system over even longer
paths.
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