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Abstract—Vision-based geolocation is a promising way to
overcome the vulnerabilities of Global Navigation Satellite Sys-
tem (GNSS) methods, which are subject to signal degradation,
intentional interference, and environmental obstacles. This paper
presents a novel approach to Unmanned Aerial Vehicle (UAV)
geolocation in long-range and high-altitude missions using satel-
lite imagery. Our method is based on the matching of encoded
vector representations in embedded space, demonstrating robust
performance to changes in vegetation and landscape. The neural
network is used to encode satellite images of a reference map
into embedding representations. Image matching is performed in
this embedded space using cross-correlation. We evaluated the
accuracy and processing time of the proposed model by querying
images along a 200 km northbound path at high altitude, covering
an area larger than twenty thousand square kilometers. We
also evaluated the network’s generalization capability on an
unknown map. Reference and query images are sourced from
satellite images captured at different acquisition times to evaluate
robustness due to appearance variations. The results demonstrate
that the method can achieve up to 96.83% accuracy on a
known map, while experiments on an unknown map averaged
90% accuracy. The processing time to match encoded images is
0.05 ms. These findings suggest the feasibility of integrating the
method into more complex vision-based geolocation systems.

I. INTRODUCTION

The use of UAVs is growing due to their ability to
cover large areas quickly. Applications include agricultural
irrigation, firefighting, package delivery, search and rescue,
monitoring, and military operations [1]. For georeferenced
positioning, UAV navigation depends heavily on GNSS, such
as the Global Positioning System (GPS). However, GNSS-
based systems face signal issues such as blocking, interference,
or inaccuracies [2] and [3]. In this sense, exploring alternative
geolocation systems that provide more resilience and auton-
omy is thus relevant.

Geolocating aerial vehicles involves estimating a UAV’s
position and attitude in six degrees of freedom (6DOF) [4], in-
cluding three translation degrees (x, y, z) and three orientation
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degrees (ϕ, θ, ψ). Furthermore, GNSS methods typically pro-
vide global translation data, while Inertial Measurement Units
(IMUs) offer orientation parameters. The IMUs provide geolo-
cation only briefly in GNSS failures, given its limitations [1].
Computer vision systems are viable alternatives for address-
ing the localization problem with more affordable cameras
and embedded systems with integrated GPUs. Visual Inertial
Odometry (VIO) tracks the camera movements using image
sequences and IMU data. However, this strategy accumulates
integration errors over time [5]. Another technique uses 3D
city maps, as shown in [6], where building edges are used
to locate the UAV, although it is costly and limited to urban
areas. Abundant satellite image databases like Landsat [7],
MODIS [8], and Sentinel [9] have made 2D reference map
approaches viable for UAV localization systems.

This work proposes an image-based autoencoder approach
for aerial vehicle geolocation on large-scale maps, with ro-
bustness to appearance changes. The main contributions of
this study are:

• Development of an innovative approach for creating geo-
referenced maps using the Earth Engine platform;

• Evaluation of a convolutional neural network-based im-
age encoding method to create latent space representa-
tions of satellite images captured at 6,000 m altitude;

• Demonstration of the method over a 200 km path,
covering an area of 20,643 km², and evaluation of
generalization on an unknown map;

• Proposal of a fast method for measuring similarity be-
tween embeddings, around 0.05 ms, based on cross-
correlation.

The model was trained on satellite images from 2022
and evaluated with images from 2023 to test its robustness
to appearance variations [10]. Evaluated for accuracy and
processing time, the model outperformed feature-based meth-
ods. To the best of our knowledge, this is the first work
that explores matching autoencoder images with appearance
variations in satellite images and unknown maps for aerial
vehicle localization in long-range high-altitude missions.



II. RELATED WORK

Several works have proposed relevant approaches address-
ing the image-matching problem for UAV geolocation. Ren
et al. [11] highlight the challenges of global robot local-
ization using computer vision due to appearance variations
from perspective changes, scene content, and lighting between
camera images and database images. Mantelli et al. [12]
emphasizes that these systems need low computational cost
and execution time for real-time image matching. Ali et al. [1]
reviewed methods for aerial vehicle localization using images,
concluding that feature extraction algorithms are most used
for their ability to extract essential and distortion-resistant
information. Descriptors extract image information such as
points, lines, edges, corners, pixels, colors, histograms, and
geometric entities [13] for subsequent image matching.

Mantelli et al. [12] proposed the abBRIEF descriptor,
based on the Binary Robust Independent Elementary Fea-
tures (BRIEF) [14], for matching drone-captured images to
a georeferenced global map, combined with an optimized
particle filter algorithm. The method differs from the BRIEF
description in using color images instead of grayscale images
and employing a quantization process instead of a Gaussian
filter to reduce noise. This approach resulted in low execution
time and high image-matching accuracy in tests. The most
extended experiment covered 2400 m on a 1.16 km2 map.

Another approach is based on Convolutional Neural Net-
works (CNNs) to identify critical elements for classification.
Ren et al. [11] presented an object detection system using
RPN (Region Proposal Network) to propose candidate regions
before detection, significantly reducing total process time and
improving the object detection accuracy. Cunha et al. [15]
proposed a patch-based CNN approach for landmark recog-
nition, dividing images into patches to improve classification
accuracy.

Bianchi et al. [16] used georeferenced grayscale satellite
images to propose a UAV localization approach regarding
low altitudes (about 40 m), based on a CNN autoencoder
model [17]. This method is faster and less computationally
expensive than a Mutual Information (MI) approach [18]. The
authors compared their method with [18] and reported positive
results in processing time optimization (0.26 ms vs. 109 ms),
maintaining the image matching accuracy. The authors’ [16]
approach requires retraining the autoencoder for new maps
and did not explore the system’s robustness with respect to
seasonal variations. In contrast to [16], our work mitigated
both the generalization of the method on unknown maps and
seasonal variation between reference and search map images
by using color satellite images, which bring more information
into the modeling process [19].

Unlike the mentioned works, [20] addresses the UAV lo-
calization problem at medium altitudes. The authors used an
Orion-E UAV for a 3,000 m altitude experiment lasting 150 s
and covering a 7 km region. They used a vector topographic
map as a reference for real-time UAV image comparison. The
captured image was segmented using a U-Net [21] to highlight

roads, rivers, and background. The Scale Invariant Feature
Transform (SIFT) detector [22] then extracted keypoints from
the segmented image, and the RANSAC [23] calculated the
homography matrix. The proposed method corrected the lo-
cation of the UAV with an accuracy of approximately 100 m
during the loss of GNSS signal.

In [24] addressed the global UAV localization challenges
on large-scale maps at low altitudes. The authors introduced
a UAV localization approach capable of handling natural
variations and ambiguities in drone-captured images over a
100 km² map without prior information about the UAV’s initial
pose. The CapsNets [25] descriptor is adopted, compacting
learned information from satellite mission maps. CapsNets
were chosen due to their ability to create stable and robust
representations against input perturbations [25]. In the exper-
iments, the UAV achieved precision from 12.6 to 18.7 m on
maps with seasonal differences between UAV-obtained images
and the reference map.

The presented works highlight a lack of approaches for
localizing aerial vehicles over thousands of square kilometers
at medium altitudes, as proposed in this work. Satellite images
undergo significant appearance changes at medium altitudes
due to vegetation, road creation, and construction, as illustrated
in Figure 1. These changes are not perceptible in urban zones
and altitudes close to sea level, as in the contexts of [12], [16],
and [24].

III. METHODOLOGY

In the localization problem, image matching can estimate
the aircraft pose [24] or act as the primary navigation sys-
tem [16]. As shown in Figure 1, this can be challenging due to
the appearance variations between the database and the images
captured by the aircraft [26]. The studies [16], [2], and [24]
achieved high success rates by encoding satellite images using
discriminative vector representation, i.e. embeddings.

(a) Image from January 2022. (b) Image from January 2023.

Fig. 1. Appearance variation between satellite images at the same location
and different acquisition times [10].

An autoencoder [17] is a CNN designed to learn dense
vectors that efficiently encode discriminative representations
of an image, allowing it to reconstruct the input image at the
output [17]. Our autoencoder’s architecture consists of three
main parts, illustrated in Figure 2. The first part, the encoder,
receives the input image and compresses it, preserving dis-
criminative information in a small latent space (bottleneck).
This latent representation contains the necessary information
to represent the input image. The third part, the decoder,
reverses the encoding process, reconstructing the input image



from the latent space vector representation. We will use the
term embedding to refer to the image representation in the
latent space for simplicity.

Our method consists of training an autoencoder with ref-
erence satellite images covering the search region. After that,
the encoder is used offline to compute the embeddings that
represent each of the reference map images (see Figure 3).

To match the encoded image vectors in the embedded space,
we used cross-correlation [27]. First, the data are normalized
by subtracting the mean and dividing by the standard devia-
tion. Then, given the normalized element values of the two
vectors x̄i and ȳi, the cross-correlation is computed as:

rx̄,ȳ =

N−1∑
i=0

x̄iȳi, (1)

where N is the data number, xi is the i-th element of the first
data series, and yi is the i-th element of the second data series.

A reference map with images from January 2022 (Figure 1a)
was used to train the autoencoder and create the pre-encoded
embeddings. We used a different set of images from the same
region for querying, captured a year later, in January 2023
(Figure 1b). The method was validated via experiments on
different map sizes, measuring accuracy and processing time.

The central idea is to match the encoded representations
of images in latent space (see Figure 4). The process begins
by randomly selecting 1 an image from the query map. This
image is then encoded into an embedding using the trained
autoencoder. The cross-correlation is employed to measure the
similarity between this query image embedding and each of
the pre-computed reference image embeddings from the pre-
trained map. The matching is done efficiently through a simple
vector-matrix multiplication. The UAV’s current location is
assigned to the coordinates associated with the reference map
embedding with the highest similarity score.

Additionally, we evaluated the method by searching an
ordered sequence of images in a continuous path, and we
tested the network’s generalization capability by assessing its
performance on a different map from the one trained.

A. Georeferenced Map

Using the Google Earth Engine [10] Python API, we created
a reference map with images from January 2022 and a query
map from January 2023, covering an arbitrarily large area of
Brazil. For this study, we used Sentinel-2 Level-1C data [9],
which offers global coverage with a revisit time of 5 days.

Figure 5 illustrates our procedure for creating the query
and reference map images. The whole dataset contains four
full-size raw satellite images. These images created a georef-
erenced grid of clipped 320 × 160 pixel images. Each grid
image was given a unique ID and then indexed to its centroid
coordinates, computed using WGS-84 coordinate system [28].

The resulting dataset comprised two maps, one composed of
images from 2022 and a second set with images from 2023 of

1In a real flight, these images would be captured in sequence, and methods
based on continuity and aircraft models would be used to discard clear outliers.

the same region. Each map contains 8064 images and covers
an area of 41, 287.68 km² of the same region.

The map with images from 2022 was divided into 85%
for the training set and 15% for the test set. Subsequently,
each image from the 2022 set is encoded into an embedding
to be used as a reference map in the validation stage and
experiments. The images from 2023 were used as a query map
to simulate a validation environment during the experiments
and demonstration of the method as a navigation algorithm.

As illustrated in Figure 4 an image from the query map
is self-encoded to later be compared through cross-correlation
with each embedding from the reference map, which, at the
end of the algorithm, returns the most similar reference image
to infer the location estimate. Figure 1 shows reference and
query images, highlighting visual differences.

B. Modeling and Training of the Neural Network

We adopted an autoencoder architecture similar to [16].
However, our work explored using the RGB color space,
bringing more information into the modeling process [19]. We
also explored investigating the network’s ability to learn the
extraction of representative information, even in ambiguous
scenarios.

The code is implemented using the PyTorch framework.
Figure 2 presents the neural network architecture and loss
function. The input image is compressed into a 1000-element
embedding in the encoder stage. The decoder opposes the
encoder, attempting to reconstruct the input image.

For the loss function, we calculated the Mean Squared
Error (MSE) of the photometric difference between input and
reconstructed images. Then, we added the MSE between the
corresponding intermediate layers (L1-L5) of the encoder and
decoder, with a weighting value α equal to 0.01. In [16], the
authors pointed out that these intermediate layer losses help
the decoder learn the reverse path of the encoder, improving
the network’s learning performance. Equation 2 describes the
following loss function used:

Loss = LF + α(L1 + L2 + L3 + L4 + L5). (2)

We used a 16 GB RAM computer for the autoencoder training
and a 12 GB NVIDIA GeForce GTX Titan X GPU. The
network was trained with satellite images from the reference
map for 200 epochs, with a learning rate of 1× 10−4.

C. Experimental setup

The entire validation process was implemented in Python
using the Google Colab platform. The codes, model, and geo-
referenced images are available in our repository2 . The process
begins with an offline preparation stage where each reference
map image is encoded into an embedding, as presented in
Figure 3. The process allows us to build a 1000 × N matrix
with the embeddings of the reference images in each column.

The search begins by randomly selecting an image from the
query map and computing its corresponding embedding. Sub-
sequently, the resulting 1× 1000 embedding vector multiplies

2https://github.com/benedettilucas/image-matching.git.



Fig. 2. Autoencoder architecture. LF corresponds to the photometric loss between the input
and reconstructed images. The losses between the intermediate layers are L1, L2, L3, L4, and
L5. Source: Author.

Fig. 3. Reference map encoding.

Fig. 4. Flowchart of the experiments for validating the image matching model.

the 1000×N reference embedding matrix, resulting in a 1×N
vector registering the cross-correlations for each reference em-
bedding. These results are sorted to identify the corresponding
ID to the highest similarity, and the correspondence is verified
against the ground truth.

The demonstration of the method as a geolocation algorithm
was conducted similarly to the flowchart in Figure 4, with
the exception that for the demonstration, the images were not
randomly selected but were instead inserted in an ordered
manner to form a straight path heading north. It is worth
noting that the decoder layers are not necessary during the
experiments and demonstrations, as their only functionality is
for model training.

IV. RESULTS AND DISCUSSION

This section presents the training results of the model
regarding the loss function and training time. The autoencoder
was trained using images from 2022 (reference map). During
the experiments, the accuracy of our method is compared

with other image matching methods for UAV localization -
SIFT [22], ORB [29] and BRIEF [14]. Following this, a
demonstration of our method as a geolocation algorithm is
conducted, where images from the 2023 (query map) are
sequentially selected to form a path from south to north.
In this topic, the model’s results are presented in terms of
accuracy and robustness to appearance variations compared to
classical methods. Finally, similar to the first demonstration,
the generalization capability of this method was evaluated
across eight paths in an unknown map.

A. Autoencoder Training

Figure 6 presents the error graph related to the loss function,
MSE, over epochs. The blue line represents the model’s error
in the training data, and the green line represents the error in
the test data. The autoencoder was trained until no significant
improvement was observed in the test data. Empirically, it
was assumed that the loss curve for the test data stabilized
around 200 epochs. The training time for the model was
approximately 11 hours.

B. Validation experiments

Experiments were conducted on ten different map sizes -
see Table I - to select the map that best fits this approach.
The results are presented in Table II for accuracy values
across different image matching methods. Ten experiments
were carried out for each map size with fifty samples each.

TABLE I
MAP AREAS USED IN EXPERIMENTS.

Map Reduction (%) Map area (km²) Number of images
1 89.68 4,259.84 832
2 79.76 8,355.84 1632
3 69.84 12,451.84 2432
4 59.92 16,547.84 3232
5 50.00 20,643.84 4032
6 39.68 24,903.68 4864
7 29.76 28,999.68 5664
8 19.84 33,095.68 6464
9 9.92 37,191.68 7264

10 Original 41,287.68 8064



Fig. 5. Stages of the Earth Engine API-Client based algorithm for creating
georeferenced maps.

Fig. 6. Loss curve on training and test sets.

TABLE II
AVERAGE ACCURACY OF THE METHODS DURING THE EXPERIMENTS.

Map Cross-correlation (%) SIFT (%) ORB (%) BRIEF (%)
1 97.40 37.20 17.20 1.40
2 98.40 70.00 40.60 4.60
3 95.00 61.60 35.40 4.60
4 91.20 60.60 34.40 2.00
5 91.00 66.00 38.00 3.40
6 94.40 60.80 35.40 2.80
7 91.20 64.00 32.60 3.00
8 94.40 62.80 32.80 4.60
9 91.00 57.60 27.20 2.80

10 82.40 56.80 27.80 3.80

As this work aims to explore large-scale altitude and area
maps, the choice was made to select the largest map that
exhibited the highest average accuracy among the applied
methods. The optimal choice for the demonstration was map
5.

C. Demonstration of the method as a geolocation algorithm

The demonstration of the method as a geolocation algorithm
was conducted in the area covered by map 5, which encom-
passes regions 1 and 2 of the raw satellite images (Figure 5)
with an area of approximately 20,643.84 km². The proposed
path is illustrated in Figure 7 and performs a search for
correspondences of 126 images from the query map, moving
from south to north along a 200 km straight line (blue line),
as all images are oriented to the north. The green point marks
the starting point, while the yellow indicates the destination.

In this demonstration, the cross-correlation approach cor-
rectly matched 96.83% of the images, surpassing the SIFT,
ORB, and BRIEF methods. Table III presents the results
regarding accuracy, processing time for feature extraction and
matching, for one comparison for each method during the
demonstration.

It is worth noting that the extraction step occurs once per
captured image, while the number of matching operations is
proportional to the size of the reference map.

As previously mentioned, the image captured by the aircraft
often differs in texture, brightness, and appearance from the
image used as a reference for training the model. Therefore,
developing an approach that is robust to these variations is

Fig. 7. 200 km path used to demonstrate the algorithm as a geolocation
system.

TABLE III
ACCURACY OF METHODS DURING THE DEMONSTRATION.

Method Accuracy (%) Extraction (ms) Matching (ms)
OURS 96.83 275.91 0.05
SIFT 79.37 14.96 193.66
ORB 47.62 3.43 337.82

BRIEF 6.35 3.03 35.42

crucial. Table IV below shows some query and reference
images that exhibited appearance variations, and our method
successfully matched them compared to other methods.

TABLE IV
COMPARISON OF PERFORMANCE BETWEEN AUTOENCODER AND OTHER

IMAGE MATCHING METHODS FOR UAV LOCALIZATION.

Query image Autoencoder SIFT ORB BRIEF



D. Generalization

The method’s generalization capability in terms of accuracy
was investigated regarding eight paths, each approximately
200 km long in an unknown map. The path demonstration
followed the procedure used in Map 5. Table V presents the
results of the approach for each path in the unknown map.

TABLE V
ACCURACY OF THE METHOD FOR UNKNOWN PATHS.

Path 1 2 3 4 5 6 7 8
Acc (%) 93.1 90.0 90.8 93.8 93.8 82.3 90,8 89.2

V. CONCLUSION

This work proposes an autoencoder-based algorithm using
cross-correlation as an approach to match satellite images in
the problem of aerial vehicle geolocation using images. As
a contribution, we explored the method’s ability in terms of
accuracy and generalization to match medium-altitude satellite
images that exhibit significant appearance differences. We
demonstrated that the implemented method can learn discrim-
inative representations of medium-altitude satellite images,
achieving approximately 90% accuracy across all experiments.
Moreover, the method showed potential for integration into a
geolocation algorithm by correctly matching 96.83% of images
along a known map path and an average of 90% across eight
paths on an unknown map. Furthermore, this work contributed
to an innovative approach to creating georeferenced maps
based on Google Earth Engine. Our mapping algorithm can
extract large-scale satellite images over time, periodicity, and
data volume, marking an essential step in UAV geolocation
using satellite images as reference maps.

Future work to enhance the robustness of the proposed
approach involves training neural networks on satellite im-
ages with more diverse orientations and overlaps to improve
matching capability. Additionally, we plan to adopt an aircraft
flight model for location belief representation, e.g., particle
filter, to narrow the search window, improving the algorithm’s
performance in terms of response speed and accuracy. Finally,
we plan to train and evaluate our method in other regions of
the world and different seasons.
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[13] J. Gómez-Reyes, J. Benı́tez-Rangel, L. Morales-Hernández, E. Resendiz-
Ochoa, and K. Camarillo-Gomez, “Image mosaicing applied on uavs
survey,” Applied Sciences, vol. 12, no. 5, p. 2729, 2022.

[14] M. Calonder, V. Lepetit, C. Strecha, and P. Fua, “Brief: Binary robust
independent elementary features,” in Computer Vision–ECCV 2010: 11th
European Conference on Computer Vision. Springer, 2010, pp. 778–
792.

[15] K. B. da Cunha, L. Maggi, V. Teichrieb, J. P. Lima, J. P. Quintino,
F. Q. B. da Silva, A. L. M. Santos, and H. Pinho, “Patch PlaNet:
Landmark recognition with patch classification using convolutional
neural networks,” in 2018 31st SIBGRAPI Conference on Graphics,
Patterns and Images (SIBGRAPI), 2018, pp. 126–133.

[16] M. Bianchi and T. D. Barfoot, “Uav localization using autoencoded
satellite images,” 2021.

[17] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” 2022.
[18] B. Patel, T. D. Barfoot, and A. P. Schoellig, “Visual localization with

google earth images for robust global pose estimation of uavs,” in 2020
IEEE Int. Conf. on Rob. and Autom. (ICRA), 2020, pp. 6491–6497.

[19] M. S. Kankanhalli, B. M. Mehtre, and R. K. Wu, “Cluster-
based color matching for image retrieval,” Pattern Recognition,
vol. 29, no. 4, pp. 701–708, 1996. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/0031320395000976

[20] A. Tanchenko, A. Fedulin, R. Bikmaev, and et al., “Uav navigation sys-
tem autonomous correction algorithm based on road and river network
recognition,” Gyroscopy Navig., vol. 11, pp. 293–299, 2020.

[21] A. Buslaev, S. Seferbekov, V. Iglovikov, and A. Shvets, “Fully convolu-
tional network for automatic road extraction from satellite imagery,” in
2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), 2018, pp. 197–1973.

[22] D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, pp. 91–110, 2004.

[23] M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Commun. ACM, vol. 24, no. 6, p. 381–395,
jun 1981. [Online]. Available: https://doi.org/10.1145/358669.358692

[24] J. Kinnari, R. Renzulli, F. Verdoja, and V. Kyrki, “Lsvl: Large-
scale season-invariant visual localization for uavs,” Robotics and
Autonomous Systems, vol. 168, p. 104497, 2023. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0921889023001367

[25] G. E. Hinton, A. Krizhevsky, and S. D. Wang, “Transforming auto-
encoders,” in Artificial Neural Networks and Machine Learning –
ICANN 2011, T. Honkela, W. Duch, M. Girolami, and S. Kaski, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 44–51.

[26] Y. Li, C. Fu, Z. Huang, Y. Zhang, and J. Pan, “Intermittent contextual
learning for keyfilter-aware uav object tracking using deep convolutional
feature,” IEEE Transactions on Multimedia, vol. 23, pp. 810–822, 2021.

[27] T. Derrick and J. Thomas, “Time-series analysis: The cross-correlation
function,” in Innovative Analyses of Human Movement, N. Stergiou, Ed.
Champaign, Illinois: Human Kinetics Publishers, 2004, pp. 189–205.

[28] EPSG:4326, “World geodetic system 1984, used in gps,” 2023.
[Online]. Available: https://epsg.io/4326

[29] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An efficient
alternative to sift or surf,” in 2011 International Conference on Computer
Vision, 2011, pp. 2564–2571.


