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Abstract

In recent years, Reinforcement Learning (RL) has made promising progress in
several areas, such as control tasks and video games, by using simple, low-
dimensional data. However, it struggles when it needs to process more complex,
high-dimensional inputs like raw pixel images, offering results that are not as good
as those that use information from laser sensors, as many robotics applications
demand. This paper introduces a new technique called Contrastive Unsuper-
vised Prioritized Representations in Reinforcement Learning (CUPRL) for mobile
robotics. This innovative approach combines RL and Contrastive Learning to
effectively handle high-dimensional observations, an area not fully explored. This
is crucial for navigating complex environments, especially for hybrid robots, such
as the Hybrid Unmanned Aerial-Underwater Vehicles (HUAUVs) that experience
strong changes in light when moving between air and water. Our approach excels
in taking important information from depth maps and RGB images during train-
ing, aiming to improve the ability of RL agents to navigate without a map in the
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context of HUAUVs. This field has much to be explored. Our tests in a robot
simulator show that CUPRL, which uses learning from both RGB and depth
images, performs better than current methods that rely only on pixel data. This
is especially true for 3D navigation without maps, where we use only RGB images
during tests. This proves that CUPRL could be useful for making decisions in
HUAUVs. We believe our work not only offers improved solutions for naviga-
tion but also encourages further research into the use of high-dimensional data in
RL, presenting a more efficient and adaptable method in complex environments
compared to earlier strategies.

Keywords: Reinforcement Learning, Autonomous Navigation, Contrastive Learning,
Hybrid Aerial-Underwater Vehicle

1 Introduction

Autonomous navigation in ever-changing environments is a significant challenge in
robotics. This involves a careful balance of perception—understanding the surround-
ings—and action—planning and moving strategically to avoid possible dangers [1].
Sensors such as laser sensors and cameras are essential in enhancing the robot’s ability
to perceive its surroundings, helping it to avoid hazards and navigate safely.

Hybrid Unmanned Aerial-Underwater Vehicles (HUAUVs) play crucial roles in
marine research, oil drilling, and search and rescue missions [2]. These versatile vehi-
cles face unique challenges as they move between air and water environments. Deep
Reinforcement Learning (Deep-RL) is a cutting-edge technique that enables these
vehicles to navigate autonomously without maps, a method that’s been successful in
simulations [3–5]. Despite its potential, Deep-RL requires a lot of data and struggles
with raw image data, which suggests we need better strategies to meet the demands
of operating HUAUVs in varying conditions [6, 7].

To address this issue, we present the Contrastive Unsupervised Prioritized Repre-
sentations in Reinforcement Learning (CUPRL) approach. This approach makes use
of Contrastive Learning to extract meaningful information from depth maps and RGB
images during the training phase. Unlike previous efforts that used the same settings
for both training and evaluation, our method uses only RGB images during evaluation.
This setting shows that our system has learned to skillfully navigate through various
scenarios, instead of just memorizing the training environment. It also demonstrates
the system’s improved accuracy and ability to adapt to various situations within differ-
ent new environments. Fig. 1 illustrates the CUPRL framework, as well as, including
the inputs It, It−1, It−2 and their corresponding depth maps D(It), D(It−1), D(It−2)
that are used in networks for training it. A detailed explanation of the CUPRL
architecture can be found in Section 3.1.

Our main contributions are:

• Developing a novel Contrastive Learning-based method for 3D mapless navigation
evaluated using a HUAUV in transitional environments using only RGB images in
the evaluation phase.
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Fig. 1: Overview of CUPRL: The image illustrates the architecture and data flow
of the CUPRL model. The model takes as input three consecutive temporal frames
of RGB images It, It−1, It−2 and depth D(It), D(It−1), D(It−2). These frames are fed
into two encoders: the query encoder processes the RGB images, while the key encoder
processes the depth maps. The encoders extract latent representations q and k from
the input data. The latent representation q is then concatenated with target position
z-axis and robot position information.

• Demonstrating how our method creates a powerful latent space capable of han-
dling both RGB and depth images, aiding in the development of efficient solutions
for navigation issues faced by hybrid vehicles undergoing sudden changes during
transitions, thus marking a significant step forward compared to previous efforts.

This paper is structured as follows: Section 2 reviews relevant previous works.
Section 3 introduces the proposed methodology. Section 4 reports the evaluation
results. Section 5 analyzes the results. Finally, Section 6 presents the conclusions and
suggests future research directions.

2 Related Works

Research on navigation without a pre-built map has been thoroughly conducted for
mobile robots on land [8]. However, compared to terrestrial robots, there has been
less research on autonomous navigation of aerial robots using Deep-RL techniques.
In these, the approaches typically abstain from utilizing visual information [9–11], or
utilize simplified information without Contrastive Learning [12–15].
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A Deep-RL method for landing a stationary or moving base of an Unmanned
Aerial Vehicle (UAV) was proposed by Rodriguez et al. [12]. Sampedro et al.[13] pro-
posed a Deep-RL approach using the Deep Deterministic Policy Gradient (DDPG)
algorithm[3] for Search and Rescue tasks in confined environments. In another study,
Jesus et al.[16] demonstrated the efficacy of Soft Actor-Critic (SAC) algorithm[4] based
approaches for robot navigation.

Various studies have investigated the navigation of UAVs, including those by
Thomas et al. [17], who proposed an RL-based algorithm using self-attention models
to control an autonomous UAV. Their work demonstrated the algorithm’s effective-
ness in completing vehicle navigation even with varying inputs, highlighting its ability
to handle noisy or modified state data. Another study by He et al. [14] simplified
vision information for Deep-RL in UAV navigation and obstacle avoidance by using a
Lobula Giant Movement Detector (LGMD). The study achieved an 80% success rate
in completing missions in a complex environment.

The work of Grando et al. [18] explored the use of Deep-RL for the navigation
of robotic systems such as HUAUVs with the use of laser sensors as input. However,
using Deep-RL can be challenging due to the need for large amounts of training data
and the inefficiency of high-dimensional observations such as raw pixel images [19]. To
overcome these challenges, Laskin et al. [20] proposed the Contrastive Unsupervised
Representations for Reinforcement Learning (CURL) technique, which is capable of
extracting useful features from raw images and improving the performance of Deep-
RL network control. Jesus et al. [21] explore a CURL-based architecture using only
depth map images as inputs for the control of a UAV in a simplified 2D navigation
context. Although CURL has shown promising results, our work uses only a first-
person vision with monocular raw RGB images for navigation in a 3D context in a
hybrid environment with air-water transition for the control of a HUAUV.

This work stands out from other related studies by using both depth map and
RGB image information in a contrast learning-based approach to address the challenge
of high-dimensional observations in the training phase while using just RGB images
during navigation in the evaluation phase. It also proposes a prioritized experience
replay memory that increases the efficiency of the proposed approach. The use of
Contrastive Learning in this work enables the development of a latent space that can
relate RGB and depth images, creating an efficient representation to solve navigation
problems in complex 3D environments, even when using only RGB images.

3 Methodology

This work proposes an RL-based mapless navigation algorithm using visual and depth
information as inputs during training to build a motion policy that avoids obstacles
in the environment and performs medium transition. Medium transition is when the
vehicle goes from one environment to another, for example going from water to air
and air to water. Depth and RGB images are generated and used as inputs to a neural
network, which learns to control navigation in these environments through prioritized
rewards. The method proposed in this work is called CUPRL. This method combines
depth maps and RGB images, a CURL-based network, and prioritized memories for
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the navigation of a hybrid vehicle. The motion equation for CUPRL is defined as
follows:

vt = fCUPRL(It), (1)

where It is the RGB image from the camera, and vt is the velocities applied to the
robot.

To train CUPRL, Equation 1 receives a depth from It and information from the
pixel observation. The CUPRL neural network extracts information from the depth
maps and RGB images and then passes through a SAC network that provides the
velocities to the robot.

Fig. 1 shows the inputs of the CUPRL, It, It−1, It−2 or oq, and D(It, It−1, It−2) or
ok. They are used in the networks for training. D(It, It−1, It−2) is the observation of
depth maps that can be estimated from the RGB images It, It−1, It−2. These obser-
vations are processed by their encoders fθq and fθk , which return the latent space
representations q and k. The latent space q, the height of the vehicle in the z axis,
and the position of the target in the environment are the information used by the
Deep-RL algorithm. For Contrastive Learning, latent spaces q and k are used in the
learning of the features of oq and ok.

This coordinated training is reflected in the loss function defined as:

Lθq = log

(
exp(q⊺klabel)

exp(q⊺klabel) +
∑N−1

i=0 exp(q⊺ki)

)
, (2)

where klabel is the recognized label for q in the i-th batch from the replay memory
sample with size N − 1. The dot products q⊺k are used to effectively determine the
similarities between q and the target k values [22]. A key part of this setup is the
Polyak-averaging method used to update the θk [23].

To capture RGB images and depth maps in a 3D context, where transitions between
different media, such as air and water can occur, we decided to use a stereo camera,
e.g a ZED camera, to generate depth maps in the CUPRL network experiments. A
stereo pair can be used for depth estimation both in air and water, as described by
Roser et al. [24].

3.1 CUPRL Architecture

Three consecutive temporal frames of RGB images and depth are stacked to train the
CUPRL model. They are used as inputs to the query and key encoders, respectively, as
illustrated in Fig. 1. The query encoder receives the RGB images, while the key encoder
receives depth maps. Through Contrastive Learning, the encoders learn simultaneously
the depth and color characteristics. The input images extract information and obtain
the latent spaces q and k. Then, target position and robot position information on
the z-axis or Zvehicle are concatenated with the latent space q. The target position
information includes the robot’s polar distance to the target dt, the yaw, and the
pitch angles of the vehicle’s front relative to the target. The outputs of the CUPRL
network are the linear velocities on the x and z axes and the angular velocities that
control the vehicle. For the CUPRL, a set of pixel information I is selected, which are

5



three images 100 × 100 × 3, and depth d, which is three images 100 × 100 × 1, both
without modifications before being processed.

The neural network architecture employed by CUPRL shares similarities with the
SAC network [4]. CUPRL processes inputs through its actor network, which consists
of four convolutional layers (serving as the encoder) followed by three fully connected
neural network layers to generate output. The choice of layers and nodes aligns with
the network structure proposed by Laskin et al. [20].

The output values for angular and linear velocity are constrained as follows:

• Angular velocity (z-axis): −0.3 to 0.3 rad/s
• Linear velocity (x-axis and z-axis): 0 to 0.3 m/s

3.2 Reward Function

For tasks involving 3D navigation, the objective is to guide a hybrid vehicle that
can travel both on water and air to a designated target point. The reward function
formulated for this task is defined as follows:

r(st, at) =


rarrive if dt < cdt

,

rcollide if minx < co,

rnavigating = cnavigating(dt−1 − dt) if minx ≥ co,

(3)

where a negative reward (rcollision = −1) is given if the minimum distance reading
from the robot to an objectminx is less than co. Here, co is equivalent to the distance of
62cm from the center of robot to an obstacle or wall that is considered a collision. The
co follows on the same distance as in the work [21], and it is based on the dimensions
of the vehicle [9]. A positive reward and policy to be optimized through RL, thus
rarrive = 1 was used. A reward is granted if the current distance dt between the robot
and the target is less than the threshold distance cdt = 40 cm. This condition is defined
as ’arriving’ at the target point, thereby enabling the robot to visually detect the
target. However, it is difficult to obtain the reward rarrive since we are using complex
environments. Thus, a reward was defined to encourage the approach between the
agent and the target rnavigating. The previous and current distance of the robot to the
target is used to generate this reward. This incentive value is multiplied by a small
value cnavigating = 0.1, aiming to reduce the impact of this reward on the main policy,
which is to reach the target in the environment.

3.3 Experimental Setup

The experiments are conducted in simulation using Gazebo and ROS, with Python
being the main programming language complemented by C++ in several parts for
efficiency. Neural networks are built using PyTorch, while the OpenCV library facili-
tates image manipulation. Hydrone robot platform is adopted [25, 26]. Details about
the simulation can be found in the work of Grando et al. [18].
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3.4 Simulated Environments

The training environments designed in Gazebo are illustrated in Fig. 2. These envi-
ronments were created to demonstrate the methods used in this study, which enable
3D navigation, air-water transitions, and successful arrival to a target while avoiding
collisions with walls and obstacles.

The first environment (Fig. 2a) includes four strategically placed obstacles to
increase navigational complexity. We employ a Deep-RL technique with a reward func-
tion that penalizes collisions with walls or obstacles. Episodes terminate upon collision,
assigning a negative reward.

A complex navigation scenario is shown in Fig. 2b. The HUAUV must
autonomously navigate this environment, avoiding obstacles and reaching a designated
target point.

(a) First environment. (b) Second environment.

Fig. 2: Simulated Environments used for training (Training phase).

We also created two testing environments to evaluate the effectiveness of the pro-
posed technique, as shown in Fig. 3. These environments aim to assess the algorithm’s
performance after being trained in other environments, to verify whether the networks
have learned an effective navigation policy that can be generalized. Fig. 3a presents an
environment similar in complexity to the first training environment, where the trained
networks will be evaluated. On the other hand, Fig. 3b shows an environment similar
to the second training environment, where the networks are also evaluated.
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(a) First environment. (b) Second environment.

Fig. 3: Simulated environment used for evaluation (Testing phase).

4 Experimental Results

We compared the proposed method, CUPRL, with Depth-CUPRL [21], which uses
only depth maps as inputs to its networks, with CURL [20] as input for the RGB
image, and with a modified version of CURL called CURL (Depth), which uses depth
maps as input, but without prioritized memory. In addition, we compared it with a
SAC (CNN prio.) network, as implemented in [21], which also incorporates prioritized
memory but with convolutional layers. All of the networks evaluated in this study
adhered to the architecture presented in Fig. 4. This network architecture is followed
by a series of 4 convolutional layers and 4 linear fully connected layers. The vehicle’s
starting position for training alternates between being on water and in the air. For
network evaluation, the initial position of the vehicle is changed for experiments of
air-water and water-air transitions.

Navigating in a 3D environment presents unique challenges due to the hybrid
vehicle’s movement in three dimensions, including the z-axis. Furthermore, a target
point is established for the agent to reach training and testing environments. In the
first training environment, the target is randomly selected, and the vehicle navigates
without colliding with obstacles. The target is alternated between air and water. The
alternation between environments is done to force the vehicle’s environment transitions
to be learned more efficiently. The training episode ends only in case of collision or
when the maximum number of time steps is reached.

To train the vehicle in the first environment, a replay memory of 100000 samples
is set up for all the trained networks. Each episode consists of 1, 000 time steps t, with
an action interval of 0.025ms or 40Hz. The neural networks go through one episode
of training, followed by an evaluation of 10 episodes. The evaluation of the networks is
conducted using only the deterministic response of the technique, without any noise.
This training and evaluation cycle is employed in every method of this work.
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Fig. 4: Proposed CUPRL network architecture.

The results of training in the first environment for the CUPRL and the comparison
networks are shown in Fig. 5a. In the initial episodes of neural network training, nega-
tive reward values are observed for the actions taken by the agent. The reward acquired
in the evaluation episodes indicates the degree of learning of the Deep-RL technique
and the average number of targets found during the evaluation. This action is possi-
ble because rarrive = 1 is the highest value of the reward function, and rnavigating is
to impact the average reward in an evaluation significantly. All networks were trained
for approximately 800, 000 time steps. It can be concluded that the proposed algo-
rithm, CUPRL, achieved the highest average reward in the first training environment.
The next highest rewards were obtained by the Depth-CUPRL, CURL (Depth), SAC
(CNN prio.), and CURL (Classic) approaches.

The results of the second environment’s training are shown in Fig. 5b. All networks
were trained for approximately 1 million time steps. Compared to the previous reward
functions shown in Fig. 5b, a more unstable reward can be observed for the proposed
and the compared algorithms. Although CUPRL had a low average reward in the
start of training, at the end it surpassed the average reward acquired compared to
other algorithms. Depth-CUPRL and CURL (Depth) had similar results at the end
of training. CURL (Classical) can achieve good average rewards despite having an
unstable average. On the other hand, SAC (CNN prio.), the only algorithm that
does not use Contrastive Learning, could not obtain average rewards greater than 1.
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(a) First environment. (b) Second environment.

Fig. 5: Training moving average of each agent’s rewards.

This result indicates that the network could not reach the target point during the
SAC (CNN prio.) training. Therefore, it can be concluded that Contrastive Learning
presents an advantage in navigating through RGB images and depth maps.

5 Discussion

To better assess the methods and their trained models, we devised two generalization
experiments on environments different from the training. The neural networks trained
on the first environment were evaluated out throughout 1000 episodes on the environ-
ment presented in Fig. 3a, divided into two stages: air-water transition and water-air
transition. In the air-water (AW) transition, the vehicle starts at an initial position in
the air and aims to reach a target point in the water. In the water-air (WA) transi-
tion, the objective is to reach a target point in the air from an initial position in the
water. The initial positions of the vehicle and the target position are fixed.

Table 1 shows the results obtained for all evaluated techniques. It is important
to note that the information from the key encoder in Fig. 1 is used only during the
contrastive network training and not during the generalization experiments stage.
Therefore, in the case of CUPRL, the evaluation is performed only with RGB images.

Algorithm Image Air-water (%) Water-air (%)

CUPRL [ours] RGB 100% 24.5%
Depth-CUPRL [21] depth 97.7% 30.1%
CURL(Depth) [21] depth 0% 0%
CURL(Classic) [20] RGB 0% 15.3%
SAC(CNN prio.) [4] depth 0% 0%

Table 1: Generalization experiment on the first scenario.

The experimental results presented in Table 1 show that the CUPRL and Depth-
CUPRL algorithms achieved the best results. On the other hand, the other evaluated
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techniques either failed to complete the navigation to the target point or obtained
insufficient results, such as the CURL (Classical) in the water-air transition. The
air-water transition allowed the proposed networks to perform better. All networks
have difficulties in the water-air transition. A common behavior observed in the eval-
uated techniques, especially those that use only depth maps, was the difficulty in
transitioning between media.

The paths shown in Fig. 6 illustrate how the vehicle navigated through the envi-
ronment during the 1000 evaluation episodes. The trajectory performed is in blue,
the initial position of the vehicle is in green, and the target position is in red. The
paths taken by CUPRL showed greater stability in its evaluation compared to Depth-
CUPRL. The other methods collided several times, as can be observed. However, one
case can be seen in Fig. 6c, where CURL (Depth) manages to avoid obstacles and reach
the target. However, upon getting close, CURL (Depth) exhibits a hovering behavior,
i.e., remaining stationary in the air.

To better assess the trajectories in the generalization experiment, Fig. 7 shows the
final median distance between the vehicle and the target at the end of each episode in
the first environment AW. In this graph, the red bar represents the median distance,
while the error bars indicate the maximum and minimum distances observed for each
method.

Notably, in Fig. 7, CUPRL consistently maintains a final median distance within 40
cm of the target, and its error bars remain within this threshold as well. This threshold,
defined in Equation 3 for cdt , triggers the rarrive reward, signifying successful arrival
at the target. While Depth-CUPRL’s median also stays within this threshold, its error
bars are larger, and as Table 1 shows, it does not always reach the target. CURL
(Depth) approaches the target in terms of median distance, but its error bars reveal
that it does not consistently reach the 40 cm threshold. The remaining methods in
Fig. 7 exhibit final median distances considerably farther from the target.

In the WA generalization experiments, Fig. 10 shows that in median all methods
tested in this work are not close to the target in the end of the experiment. But for
CUPRL, Depth-CUPRL, and CURL (Classic) have a minimum close to the thereshold
cdt . This contributes with the Table 1, that shows that some cases in the experiment
the methods arrived to the target position in the environment water-air.

In the WA generalization experiments for the first environment, Fig. 8 reveals
that, for the median results, none of the tested methods come close to the target by
the end of the experiment. However, CUPRL, Depth-CUPRL, and CURL (Classic)
demonstrate a minimum distance close to the cdt threshold. This observation aligns
with Table 1, which indicates that these methods did reach the target position in the
water-air environment in some instances.

After training the neural networks in the second environment, another set of gen-
eralization experiments was conducted on the environment shown in Fig. 3b for the
trained model. The evaluation results for all the techniques compared in this study
are presented in Table 2. It is important to highlight the complexity of this scenario
impacting all methods.

The evaluation in Table 2 shows that the proposed algorithm CUPRL and Depth-
CUPRL [21] achieved the best results once again, while the other evaluated techniques
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(a) CUPRL AW (b) Depth-CUPRL AW (c) CURL (Depth) AW

(d) CURL (Classic) AW (e) SAC (CNN prio.) AW

(f) CUPRL WA (g) Depth-CUPRL WA (h) CURL (Depth) WA

(i) CURL (Classic) WA (j) SAC (CNN prio.) WA

Fig. 6: Trajectories performed in the generalization experiment on the first scenario
for AW and WA transitions.
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Fig. 7: Final median distance from the vehicle to the target in the generalization
experiment on the first environment AW.

Algorithm Image Air-water (%) Water-air (%)

CUPRL [ours] RGB 100% 14.6%
Depth-CUPRL [21] depth 100% 0%
CURL (Depth) [21] depth 0% 0%
CURL (Classic) [20] RGB 0% 0%
SAC (CNN prio.) [4] depth 0% 0%

Table 2: Generalization experiment on the second scenario.

failed in all cases. Based on the evaluation results from the first and second environ-
ments, the proposed network demonstrated effectiveness in the air-water transition,
but none of the evaluated networks achieved good performance in the water-air tran-
sition. This limitation can be attributed to the simulation (where the water surface is
viewed as an obstacle), reward function, and training methodology used in this study,
as the water in the simulation is seen as an obstacle.

The trajectories followed by the robot in the second scenario of evaluation are
presented in Fig. 9.

The paths shown in Fig. 9 illustrate how the hybrid vehicle navigated the more
complex second environment during 1000 evaluation episodes. CUPRL achieved a
100% success rate in the air-water transition and reached the target in some of the
water-air transitions. On the other hand, Depth-CUPRL only succeeded in the air-
water transitions. The other techniques evaluated, CURL (Depth), CURL (Classical),
and SAC (CNN prio.), all displayed a behavior that generated collisions or hovering
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Fig. 8: Final median distance from the vehicle to the target in the generalization
experiment on the first environment WA.

over the water. This hovering behavior can also be observed in the CURL (Depth)
network. Another interesting behavior was observed in evaluating SAC (CNN prio.)
during the water-air transition. During training, the SAC (CNN prio.) network was
not able to receive positive rewards but did not receive negative rewards indicating
collisions. The hovering behavior observed near the target could suggest that SAC
(CNN prio.) could not understand the optimal policy for navigating to the target.

In the AW generalization experiments for the second environment, Fig. 10 closely
mirrors the graph in Fig. 7. The primary distinctions lie in the maximum value for
Depth-CUPRL and a slightly increased distance from the target for CURL (Depth).
This suggests that the methods maintain consistent results even within a more complex
environment.

In the WA generalization experiments for the second environment, Fig. 11 demon-
strates that the median results for all methods are distant from the target. However,
CUPRL’s minimum distance reaches the cdt

threshold, indicating some successful
arrivals at the target position, as supported by Table 2. While SAC (CNN prio.)
exhibits a median result closest to the target, the trajectories in Fig. 9k reveal a hov-
ering behavior, suggesting that SAC (CNN prio.) struggled to learn optimal actions
for this environment.

6 Conclusions

In this work, we proposed a navigation method using only RGB images applied to
hybrid vehicles capable of operating in air and water. The motivation behind this

14



(a) CUPRL AW (b) CURL Depth AW (c) CURL Depth AW

(d) Depth-CUPRL AW (e) CURL Classic AW (f) SAC CNN prio. AW

(g) CUPRL WA (h) CURL Depth WA (i) Depth-CUPRL WA

(j) CURL Classic WA (k) SAC CNN prio. WA

Fig. 9: Trajectories performed in the generalization experiment on the second scenario
for AW and WA transitions.
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Fig. 10: Final median distance from the vehicle to the target in the generalization
experiment on the second environment AW.

approach is that reinforcement learning networks are not sample-efficient in high-
dimensional observation spaces [7]. The proposed approach was developed and applied
to two tasks in a simulated 3D scenario, showing superior performance compared to
other pixel-based approaches, as shown in Fig. 5a and Fig. 5b.

Our approach, called CUPRL, uses RGB images and depth maps as input to train a
network that learns latent representations from image sequences. This method is used
to navigate the hybrid vehicle and enables it to avoid collisions with objects during
the 3D transition between air and water. The main contribution of this work is that
the learned representations from the encoder, are extracted from the RGB images and
depth maps during training, and just from the RGB images in the evaluation phase. It
was found that the use of a combination of Deep-RL and Contrastive Learning resulted
in superior performance when compared with other Deep-RL approaches based solely
on visual information, even when the proposed method is applied only with RGB
image information after training, as is the case with CUPRL.

In this study, we demonstrated that our Contrastive Learning technique can create
a useful latent space from RGB and depth images, improving navigation for hybrid
underwater and aerial vehicles in complex settings. These vehicles often face challenges
due to varying light and contrast in air and water environments as well as dealing
with medium transition. We believe our method offers the most effective approach to
navigation tasks with visual inputs, and it holds promise for further development in
this field.

In future work, we plan to better investigate the transition between water-air
medium and explore additional techniques to improve the performance of our proposed
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Fig. 11: Final median distance from the vehicle to the target in the generalization
experiment on the second environment WA.

approach. We also plan to evaluate the algorithms in a real-world environment by
navigating a real Hydrone vehicle.

Supplementary information. The source code has been made publicly available
at the following URL: https://github.com/dranaju/cuprl navigation.
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