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Abstract—Deep Reinforcement Learning (DRL) has emerged
as a promising approach to enhance motion control and decision-
making through a wide range of robotic applications. While
prior research has demonstrated the efficacy of DRL algorithms
in facilitating autonomous mapless navigation for aerial and
terrestrial mobile robots, these methods often grapple with poor
generalization when faced with unknown tasks and environments.
This paper explores the impact of the Delayed Policy Updates
(DPU) technique on fostering generalization to new situations
and bolstering the overall performance of agents. Our analysis
of DPU for aerial and terrestrial mobile robots in four simulated
environments reveals that this technique significantly curtails
the lack of generalization and accelerates the learning process
for agents, enhancing their efficiency across diverse tasks and
unknown scenarios.

Index Terms—Deep Reinforcement Learning, Delayed Policy
Updates, Mobile Robots, Learning Generalization.

I. INTRODUCTION

Reinforcement Learning (RL) and Deep Reinforcement
Learning (DRL) have enhanced autonomous decision-making
in machines. RL entails an agent learning to achieve a goal
through actions in an environment, guided by feedback from
rewards or penalties [1], [2]. By integrating deep neural
networks with RL, DRL advances these capabilities, enabling
the approximation of optimal policies for handling complex
inputs and learning from large amounts of unstructured
data. These advancements have spurred significant progress
in gaming [3] and robotics [4], [5]. However, a notable
challenge in model-free DRL is agents’ susceptibility to
poor generalization in unfamiliar scenarios, limiting their
task generalization effectiveness [6]–[8].

Generalization, the capacity of neural networks to apply
learned knowledge to unseen data, is essential for developing
neural networks, representing a primary objective in deep
learning [9]. Insufficient generalization limits a model’s
usefulness, resulting in subpar performance on data not
encountered during training. Various techniques have been
proposed to improve generalization, such as dropout [10],
[11], normalization [12], [13], and ensemble methods [14],
enhancing the robustness and effectiveness of the model.

Improving generalization in DRL is critical for ensuring
robust performance across various unknown scenarios. This
generalization is significant, as DRL agents often excel in
their training environments, optimizing their behavior to such
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Fig. 1: Architecture of the Twin Delayed Deep Deterministic
Policy Gradient (TD3) algorithm and its mechanisms.

an extent that they appear to overfit these specific scenarios.
However, when faced with changes in the environment, as
small as they may be (a new object to avoid in autonomous
navigation, for example), their performance can drastically
decrease, limiting task precision and their ability to complete it
successfully [15]. Numerous methods have been developed to
enhance generalization in deep reinforcement learning, includ-
ing soft data augmentation [16], mixture regularization [17],
and others.

Delayed Policy Updates (DPU) [18] is one of these
techniques, and it aims to bolster learning stability by
postponing the agent’s policy updates, allowing for learning
from a steadier experience pool over extended periods. This
study analyzes DPU’s effect on RL agents’ generalization
in navigation tasks for mobile robots. Robots must adapt to
new tasks or environments in this critical area while retaining
learned knowledge. We demonstrate through experiments with
varying DPU settings in different environments that DPU
significantly enhances generalization. Our research evaluates
DPU’s role in addressing generalization challenges within RL
for both aerial and terrestrial robot navigation.

The present work specifically contributes to the following
topics:

• We train three identical agents to navigate autonomously
as aerial robots and three to navigate autonomously
as terrestrial robots, each configured with different
DPU values. Our analysis reveals that a greater delay
contributes positively to the success rate for a navigation
task assigned to an aerial or mobile robot.



• In a subsequent experiment within an unfamiliar scenario,
we confirm the agents’ training effectiveness. The results
demonstrate that an increased delay greatly enhances
the agent’s generalization capabilities across different
environments in both applications.

The work has the following structure: related works are
addressed in Section II. Our approaches and tools used can
be seen in Section III. The results achieved are presented in
the Section IV. Section V shows our overall analysis of the
results, and Section VI presents the perspective for future
works.

II. RELATED WORK

Throughout the years, a vast number of techniques have
been developed to enhance the generalization capabilities of
DRL architectures. Karl Cobbe et al. [19] delved into the issue
of overfitting within deep reinforcement learning, emphasizing
the difficulty of achieving generalization across procedu-
rally generated environments. By introducing CoinRun, a
benchmark for RL generalization, they revealed that agents
often exhibit overfitting when trained on extensive datasets.
Their findings suggested that adopting deeper convolutional
structures and incorporating methods commonly used in
supervised learning, such as ℓ2 regularization, dropout, data
augmentation, and batch normalization, can significantly
bolster generalization in RL contexts.

Building on this understanding, Farebrother et al. [20]
also tackled the challenge of overfitting in DRL, focusing on
DQN models applied to Atari 2600 games. They underscored
the innovative application of game modes to assess the
generalization capacity of DQN agents, showcasing how the
integration of regularization techniques like dropout and ℓ2
regularization can amplify the adaptability of DQN models
across varied game scenarios. This work provides additional
insight into addressing the generalization dilemma within RL
environments.

In a complementary effort, Lee et al. [21] proposed a
novel method to refine the generalization of DRL agents.
Their technique, which utilizes randomized (convolutional)
neural networks to alter input observations, encourages the
formation of robust features consistent across a spectrum
of randomized environments. Moreover, they introduced a
Monte Carlo approximation-based inference strategy to reduce
the variance associated with this input perturbation, further
contributing to the toolkit for enhancing RL generalization.

Extending the exploration of generalization in DRL, Juste-
sen et al. [22] investigated the efficacy of using procedurally
generated levels during training. Their research demonstrated
that such an approach facilitates the generalization of RL
models to new, similarly distributed levels and improves
efficiency by dynamically adjusting the difficulty of levels in
response to the agent’s performance, highlighting a strategic
method to optimize training processes.

Further advancing the field, Raileanu et al. [23] intro-
duced automated techniques for identifying effective data
augmentations across various tasks, markedly improving agent

generalization. This innovation circumvents the need for
expert knowledge in choosing task-specific augmentations,
addressing a significant challenge in scaling RL applications.
Additionally, introducing two novel regularization terms for
policy and value functions integrates data augmentation
into actor-critic algorithms at a theoretical level, marking
a significant step forward in the quest for enhanced RL
generalization.

The Twin Delayed Deep Deterministic Policy Gradient
(TD3) algorithm, introduced by Fujimoto et al. [18], advances
the Deep Deterministic Policy Gradient (DDPG) frame-
work [24] for improved performance in continuous control
tasks within RL. By employing dual critics (critic 1 and critic
2) for Q-value estimation, TD3 strategically addresses the
overestimation bias common in Q-learning algorithms. A key
innovation of TD3 is the asynchronous update of policy (actor)
and Q-value estimators (critics), introducing a deliberate delay
in policy updates to mitigate the risk of overfitting premature
Q-value estimates. This methodological refinement has seen
application across various domains, notably in enhancing
mobile robotics tasks [25]–[30], these works focus primarily
on algorithmic or task-specific improvements rather than on
the learning impact of the DPU technique itself.

This study aims to fill a gap in the literature by analyzing
the effects of DPU within the context of continuous control in
RL, particularly concerning learning generalization. We delve
into how delayed policy updates influence learning processes
and an agent’s capability to execute specific tasks, focusing
on navigation tasks for aerial and terrestrial mobile robots. To
the best of our knowledge, it consists of a novel application
not yet explored in existing research.

III. METHODOLOGY

In this section, we present our DRL approach. We detail
the network structure and the implementation of the TD3
algorithm. We also present the simulation details and the task
used to perform the analysis.

A. Twin Delayed Deep Deterministic Policy Gradient

The Deep Deterministic Policy Gradient (DDPG) algorithm,
introduced by Lillicrap et al. [24], marked a significant
advancement in the field of reinforcement learning for
continuous control tasks, particularly in robotics. Despite
its achievements, DDPG is prone to overestimating Q-
values, which can destabilize the learning policy and lead to
suboptimal performance.

TD3 algorithm introduces several key improvements over
its predecessor. By employing clipped double-Q learning, TD3
mitigates the overestimation bias by using two critic networks
to calculate the Bellman error loss functions, taking the
minimum value of their Q-value estimations. Furthermore, it
incorporates target policy smoothing by adding Gaussian noise
to the target action, enhancing exploration, and preventing
policy exploitation. A distinctive feature of TD3 is its delayed
policy updates strategy, wherein the policy network’s updates
are less frequent than those of the critic networks. The delay



(a) First scenario. (b) Second scenario.

Fig. 2: Training and evaluation scenarios for aerial mobile
robots, respectively.

parameter η represents the number of environment steps that
should be executed before updating the target actor network
for the learning calculations. This delay reduces the risk of
policy overfitting, promoting more stable learning and better
generalization across a broader range of tasks, as shown in
Section IV. The implementation of the TD3 algorithm in
this work incorporates these advancements, demonstrating its
efficacy in complex control scenarios.

We use a fully connected Artificial Neural Network (ANN)
as actor-network and denote them by ϕ and its copy ϕ′ as
actor target. The actor target chooses the action a′ based on
the state s′, and we add Ornstein-Uhlenbeck [31] noise to
it. The double critic targets take the tuple (s′, a′) and return
two Q-values as output. The minimum of the two target Q-
values is considered the approximated value return. The loss
is calculated with the Mean Squared Error of the approximate
value from the target networks and the value from the critic
networks. We use Adaptive Moment Estimation (Adam) to
minimize the loss.

Three variants of the TD3 algorithm were used in the
methodology. The first sets the parameter η = 2, the second
uses η = 4, and the last uses η = 8. Each agent was trained
and evaluated independently.

B. Aerial Robot Simulated Environments and Task Description

Our research utilized aerial mobile robots in simulations
developed by Grando et al. [32]–[34], and Jesus et al. [35],
utilizing the Gazebo simulator in conjunction with ROS. The
RotorS framework [36] served as the foundation, facilitating
the simulation of aerial vehicles with capabilities for various
command levels, including angular rates, attitude, and location
control, as well as wind simulation using the Ornstein-
Uhlenbeck process.

We utilized two 10-meter square scenarios: the first features
four symmetrically placed obstacles around the center, and the

(a) First scenario. (b) Second scenario.

Fig. 3: Training and evaluation scenarios for terrestrial mobile
robots, respectively.

second contains a single central obstacle. The first scenario
was used for training purposes, while the second evaluated the
model’s generalization capabilities and retention of learned
behaviors. Fig. 2 depicts both scenarios.

In each scenario, the robot navigated from a fixed start
point to a goal, requiring obstacle detection and avoidance
facilitated by LIDAR data. During the training phase, the
target goal was set aleatory inside the environment limits,
while during the evaluation phase, four fixed positions were
defined as targets. The environment state provided to the agent
encompasses 26 dimensions: 20 from distance sensors, three
from previous actions, and three detailing the target’s position
(including relative position and angles in the x-y and z-range
planes). Distance data was collected via LIDAR, spaced at
13.5-degree intervals across a 270-degree field.

Action scales range from 0 to 0.25 m/s for linear velocity,
-0.25 to 0.25 m/s for altitude adjustments, and -0.25 to 0.25
radians for angular changes (∆ yaw), enabling effective
navigation and obstacle avoidance.

A binary reward function was employed, offering a positive
reward for successful navigation and a negative reward for
collisions or reaching the 500-step episode limit:

r(st, at) =

{
rarrive if dt < cd

rcollide if minx < co || ep = 500,
(1)

where rarrive = 200 is given to the agent when completed the
task successfully, while rcollide = −20 penalizes collisions or
timeouts, with both cd and co set to 0.5 meters. The Reward
and maximum episode values were defined empirically, and
the model used in the evaluation was the one at step 5000000.



(a) Aerial mobile robot. (b) Terrestrial mobile robot.

Fig. 4: Reward moving average over 5000000 steps of training (aerial) 5000 episodes of training (terrestrial).

C. Terrestrial Robot Simulated Environments and Task De-
scription

Our experiments were conducted using a terrestrial mobile
robot within simulated environments, utilizing the Gazebo
simulator in conjunction with ROS2 and the Turtlebot3 robot.

We utilized two 5-meter square scenarios: the first presented
three obstacles that constrained the robot’s movement through
the center, while the second scenario arranged four obstacles
symmetrically around the center. The first scenario was used
for training purposes, while the second evaluated the model’s
generalization capabilities and retention of learned behaviors.
Fig. 3 depicts both scenarios.

Like the aerial simulations, the terrestrial robot’s task
involved navigating from a start to a goal, relying on LIDAR
for obstacle detection. The environment state fed to the agent
included 14 dimensions: Ten sensor distance readings, distance
and angle to target, and the robot’s current linear and angular
velocity. Action scales range from 0 to 0.25 m/s for linear
velocity and -0.25 to 0.25 m/s for angular velocity.

The same binary reward function was employed with a
250-step episode limit. rarrive = 100 is given to the agent
when completed the task successfully, while rcollide = −10
penalizes collisions or timeouts, with cd set to 0.3 meters and
co set to 0.19 meters. In this case, the Reward and maximum
episode values were defined empirically, and the model used
in the evaluation was the one at episode 5000.

IV. RESULTS

Regarding the aerial task, the reward trend over 500
episodes, depicted in Fig. 4a, illustrates that agents with
higher DPU values learn more rapidly and attain a stabilized
reward pattern sooner. This early stabilization suggests that
higher DPU values enable agents to balance exploration with
exploitation efficiently. However, in the known scenario, they
may not reach the maximal reward potential obtained by
agents with lower DPU values that exhibit more specialized
behavior.

In the context of terrestrial robot navigation, the observed
reward trend exhibited a high degree of similarity across
all values of DPU, with each agent successfully attaining

TABLE I: Aerial mobile robot metrics for different updates
delay (η) in known scenarios.

η
Success

Rate (%) ER Mean ER Std. ET Mean ET Std.

2 82.98% 162.55 83.12 33.53 12.86
4 100.00% 200.00 0.00 27.25 5.90
8 100.00% 200.00 0.00 22.89 1.64

the maximum reward and sustaining knowledge retention, as
depicted in Fig. 4b. Remarkably, towards the conclusion of the
experiments, we observed that the systems characterized by
η = 2 and η = 4 exhibited significant fluctuations in reward
outcomes, demonstrating frequent failures. This phenomenon
is further illustrated by the moving average, calculated over a
reduced interval, which reveals the green (representing η = 4)
and blue (representing η = 2) lines exhibiting pronounced
oscillations in performance towards the latter stages of the
study in stark contrast to the purple line (representing η = 8),
which maintains a consistent level of stability.

To test agent performance under various DPU conditions,
we employ metrics such as Success Rate, Episode Reward
(ER) Mean, and Standard Deviation (Std.), along with Episode
Time (ET) Mean and Std. The compiled outcomes for
scenarios both recognized and unfamiliar are presented in
Tables I and II for aerial tasks, as well as in Tables III
and IV for terrestrial tasks. Data analysis reveals that elevated
DPU values enhance performance in known environments
while significantly boosting performance in unknown settings
(suggesting that lower DPUs may tend to overfit). This fact is
exemplified by the observation that with η = 2, performance
in unfamiliar environments decreases dramatically, from
82.98% to 16.33% in aerial tasks and from 93.94% to 70.71%
in terrestrial tasks. Conversely, a DPU of η = 8 demonstrates
a minor decline from 100% to 98.67% in aerial scenarios and
from 99% to 85% in terrestrial scenarios, thereby illustrating
superior generalization capabilities.

Analysis of the aerial agent trajectories in the known and
unknown environments (Fig. 5) provides valuable insights
into the agents’ navigation strategies. In the known scenario,
trajectories for higher DPU values (η = 4 and η = 8) reveal
the more direct and efficient path to the goal, consistent with



(a) known scenario, η =
2.

(b) known scenario, η =
4.

(c) known scenario, η =
8.

(d) Unknown scenario
η = 2.

(e) Unknown scenario
η = 4.

(f) Unknown scenario
η = 8.

Fig. 5: Trajectories achieved by the drone controlled by TD3 with different update delays (η) in known and unknown
scenarios.

their 100%
When examining trajectories in the unknown environment,

the higher DPU agent (η = 8) demonstrates remarkable
adaptability, maintaining a clear and concise path to the goal,
as illustrated in Fig. 5f, which is in line with its high success
rate of 98.67%. Conversely, the agent with a lower DPU value
(η = 2) shows significant difficulty in navigating the new
environment, with erratic movements and a marked decrease
in success rate to 16.33%, further emphasizing the importance
of DPU in unfamiliar settings and the fact that low delays
cause dramatic lack of generalization.

V. DISCUSSION

The experimental findings highlight DPU’s impacts on rein-
forcement learning agents’ learning dynamics and adaptability.
Specifically, a higher DPU value correlates with accelerated
learning in initial training phases and enhanced generalization
to new scenarios. This fact suggests that delaying policy
updates enables agents to develop more robust and flexible
strategies that are effective across a variety of environmental
conditions.

The superior generalization observed with higher DPU val-
ues, particularly the minimal performance degradation when
transitioning from known to unknown scenarios, underscores
the value of this approach in applications where agents must
operate in diverse and dynamically changing environments,
as noted in Tables II and IV. It contrasts with the tendency
of agents trained with lower DPU values to become highly
specialized in their training environments, which can limit
their effectiveness in new or altered contexts.

This study’s insights have important implications for de-
signing and training reinforcement learning agents, especially
in domains requiring a balance between high performance in
familiar settings and the ability to adapt to new situations.
Optimizing the DPU parameter emerges as a crucial strategy
for achieving this balance, providing a mechanism to tailor

TABLE II: Aerial mobile robot metrics for different updates
delay (η) in unknown scenarios.

η
Success

Rate (%) ER Mean ER Std. ET Mean ET Std.

2 16.33% 21.63 79.67 45.43 40.05
4 73.68% 142.10 97.39 22.33 10.12
8 98.67% 197.07 25.40 34.60 21.65

TABLE III: Terrestrial mobile robot metrics for different
updates delay (η) in known scenarios.

η
Success

Rate (%) ER Mean ER Std.

2 94 93.4 26.12
4 97 96.7 18.76
8 99 98.9 10.94

agent behavior to meet the specific challenges of the task at
hand.

In conclusion, our work contributes to a deeper understand-
ing of how Delayed Policy Updates influence the development
of more adaptable and generalizable reinforcement learning
agents, paving the way for future research to explore the op-
timal configuration of these parameters in various application
domains.

VI. CONCLUSIONS

This study highlights the significant role that DPU plays in
reinforcement learning, particularly within the ambit of robotic
navigation. Our empirical analysis has underscored that DPUs
influence RL agents’ learning speed and ability to generalize
across diverse environments and optimize their navigation
trajectories. A key takeaway from our experiments is the
demonstrable advantage of higher DPU values in contexts
that demand rapid adaptation from the agents.

Our investigation into the Delayed Policy Updates technique
has shown its potential to enhance the continuous control
capabilities of RL agents engaged in complex navigation
tasks. Notably, we found that an agent configured with a more
considerable DPU value (η = 8) exhibited a negligible drop in
success rate when transitioning to an unfamiliar environment,
a stark contrast to the performance of the agent with a lower
DPU value (η = 2), which saw a dramatic decrease. These
insights are pivotal, as they reveal how subtle adjustments
in the learning algorithm’s parameters can yield substantial
differences in an agent’s adaptability and competency.
TABLE IV: Terrestrial mobile robot metrics for different
updates delay (η) in unknown scenarios.

η
Success

Rate (%) ER Mean ER Std.

2 71 68.1 49.91
4 72 69.2 49.39
8 85 83.5 39.28



Our future directions will aim to understand other tech-
niques that may interact with DPUs, particularly in addressing
task generalization in reinforcement learning. By expanding
our scope, we anticipate uncovering richer insights that could
lead to more robust and versatile learning algorithms tailored
to the multifaceted demands of real-world applications.
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