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Abstract—Previous works showed that Deep-RL can be applied
to perform mapless navigation, including the medium transition
of Hybrid Unmanned Aerial Underwater Vehicles (HUAUVs).
This paper presents new approaches based on the state-of-the-art
actor-critic algorithms to address the navigation and medium
transition problems for a HUAUV. We show that a double
critic Deep-RL with Recurrent Neural Networks improves the
navigation performance of HUAUVs using solely range data and
relative localization. Our Deep-RL approaches achieved better
navigation and transitioning capabilities with a solid generalization
of learning through distinct simulated scenarios, outperforming
previous approaches.

SUPPLEMENTARY MATERIAL

Video of the experiments are available at: https://
youtu.be/rKqUMOKzgSI. Released code at: https://
github.com/ricardoGrando/DoCRL.

I. INTRODUCTION

Several studies about Hybrid Unmanned Aerial Underwater
Vehicles (HUAUVs) have been published recently [1]–[8].
These types of vehicles enable an interesting range of new
applications due to their capability to operate both in the air and
underwater. These include inspection and mapping of partly
submerged areas in industrial facilities, search and rescue and
others. Most of the literature in the field is still focused on
vehicle design, with few published works on the theme of
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Fig. 1: Our HUAUV underwater in the first scenario (left) and
its respective sonar readings (right).

autonomous navigation [9]. The ability to navigate in both
environments and successfully transit from one to another
imposes additional challenges that must be addressed.

Lately, approaches based on Deep-RL have been enhanced to
address navigation-related tasks for a range of mobile vehicles,
including ground mobile robots [10], aerial robots [11], [12]
and underwater robots [13]. Based on actor-critic methods
and multi-layer network structures, these approaches have
achieved interesting results in mapless navigation, obstacle
avoidance, even including media transitioning for HUAUVs [9],
[14]. However, the challenges faced by this kind of vehicle
make these existing approaches still too limited, with poor
generalization through different scenarios.

In this work, we present two new double-critic Deep-RL
approaches in the context of HUAUVs to perform navigation-
related tasks in a continuous state-space environment: (1) a
deterministic approach based on Twin Delayed Deep Determin-



istic Policy Gradient (TD3) [15]; and (2) a stochastic approach
based on Soft Actor-Critic (SAC) [16]. We show we are capable
of training agents that are consistently better than state-of-the-
art in generalizing through different simulated scenarios, with
improved stability in mapless navigation, obstacle avoidance
and medium transitions. Our evaluation tasks included both air-
to-water and water-to-air transitions. We compared our methods
with other single critic approaches and with an adapted version
of a traditional Behavior-Based Algorithm (BBA) [17] used in
aerial vehicles.

This work provides the following main contributions:
• We show that our agents present a robust capacity for

generalization through different environments, achieving a
good performance in a complex and completely unknown
environment. The robot also performs the medium transi-
tion, being capable of arriving at the desired target and
avoiding collisions.

• We show that a Long Short Term Memory (LSTM)
architecture can achieve better overall performance and
capacity for generalization than the state-of-the-art Multi-
Layer Perceptron (MLP) architectures.

This work has the following structure: the related works are
discussed in the following section (Sec. II). Following it, we
present our methodology in Sec. III. The results are presented
in Sec. IV and discussed in Sec. V.

II. RELATED WORK

For more traditional types of vehicles, several works have
been published demonstrating how efficiently Deep-RL can
solve the mapless navigation problem [18]. For a ground robot,
Tai et al. [19] demonstrated a mapless motion planner based on
the DDPG algorithm employing a 10-dimensional range finder
combined with the relative distance to the target as inputs
and continuous steering signals as outputs. Recently, Deep-RL
methods have also been successfully used by Ota et al. [10],
de Jesus et al. [20], [21] and others, to accomplish mapless
navigation-related tasks for terrestrial mobile robots. Singh and
Thongam [22] demonstrated efficient near-optimal navigation
for a ground robot in dynamic environments employing an
MLP to perform speed control while choosing collision-free
path segments.

For UAVs, Kelchtermans and Tuytelaars [23] demonstrated
how memory could help Deep Neural Networks (DNN)
for navigation in a simulated room crossing task. Tong et
al. [11] showed better than state-of-the-art convergence and
effectiveness in adopting a DRL-based method combined with
a LSTM to navigate a UAV in highly dynamic environments,
with numerous obstacles moving fast.

When it comes to problems involving specifically mapless
navigation for UAVs, few works examine the effectiveness of
Deep-RL. Grando et al. [24] explored a Deep-RL architecture,
however, navigation was constrained to a 2D space. Rodriguez
et al. [25] employed a DDPG-based strategy to solve the
problem of landing UAVs on a moving platform. Similar to
our work, they employed RotorS framework [26] combined
with the Gazebo simulator. Sampedro et al. [27] proposed a

DDPG-based strategy for search and rescue missions in indoor
environments, utilizing real and simulated visual data. Kang et
al. [28] also used visual information, although he focused
on the subject of collision avoidance. In a go-to-target task,
Barros et al. [29] applied a SAC-based method for the low-level
control of a UAV. Double critic-based Deep-RL approaches
similar to the one proposed here have also been shown to yield
good results [12].

The HUAUV literature is still mostly concerned with
vehicle design and modeling [1]–[7]. Two works have recently
tackled the navigation problem with the medium transition of
HUAUVs [30], [9]. Pinheiro et al. [30] focused on smoothing
the medium transition problem in a simulated model on
MATLAB. Grando et al. [9] developed Deep-RL actor-critic
approaches and a MLP architecture. These two works were
developed using generic distance sensing information for aerial
and underwater navigation. In contrast, our work relies on more
realistic sensing data, with the simulated LIDAR and sonar
being both based on real-world devices.

The HUAUV presented in this paper is based on Drews-Jr et
al. [1] model, which Neto et al. [2] has largely expanded.
Our work differs from the previously discussed works by
only using the vehicle’s relative localization data and not its
explicit localization data. We also present Deep-RL approaches
based on double critic techniques instead of single critic, with
RNN structures instead of MLP, traditionally used for mapless
navigation of mobile robots. We compare our approaches with
state-of-the-art Deep-RL approaches and with a behavior-based
algorithm [17] adapted for hybrid vehicles to show that our
new methodology improves the overall capability to generalize
through distinct environments.

III. METHODOLOGY

In this section, we describe our simulation environment,
our hybrid vehicle, and the proposed Deep-RL, detailing the
network structure for both deterministic and stochastic agents.
We also introduce the task that the vehicle must accomplish
autonomously and the respective reward function.

A. Deterministic Deep RL

Developing on the DQN [31], Deep Deterministic Policy
Gradient (DDPG) [32] employs an actor-network where the
output is a vector of real values representing the chosen
action, and a second neural network to learn the target
function, providing stability and making it ideal for mobile
robots [20]. While it provides good results, DDPG still has
its problems, like overestimating the Q-values, which leads
to policy breaking. TD3 [15] uses DDPG as its backbone,
adding some improvements, such as clipped double-Q learning
with two neural networks as targets for the Bellman error loss
functions, delayed policy updates, and Gaussian noise on the
target action, raising its performance.

Our deterministic approach is based on the TD3 technique.
The pseudocode can be seen in Algorithm 1.

We train for max steps steps in max eps episodes. Our
approach starts by exploring random actions for the initial



Algorithm 1 Deep Reinforcement Learning Deterministic
1: Initialize params of critic networks θ1, θ2 , and actor network ϕ
2: Initialize params of target networks ϕ′ ← ϕ, θ′

1 ← θ1, θ′
2 ← θ2

3: Initialize replay buffer β
4: for ep = 1 to max eps do
5: reset environment state
6: for t = 0 to max steps do
7: if t < start steps then
8: at ← env.action space.sample()
9: else

10: at ← µϕ(st) + ϵ, ϵ ∼ N (0, OU)
11: end if
12: st+1, rt, dt, ← env.step(at)
13: store the new transition (st, at, rt, st+1, dt) into β
14: if t > start steps then
15: Sample mini-batch B of N transitions (st, at, rt, st+1, dt) from β
16: a′ ← µϕ′ (s′) + ϵ, ϵ ∼ clip(N (0, σ̃),−c, c)
17: Computes target:

Qt ← r + γ ∗mini=1,2 Qθi
(s′, a′)

18: Update double critics with one step gradient descent:
∇θi

1
N

∑
i∈B(Qt −Qθi(st,at)

)2 for i=1,2
19: if t % policy freq(t) == 0 then
20: Update policy with one step gradient descent:

∇ϕ
1
N

∑
i[∇atQθ1

(st, at)|at=µ(ϕ)∇ϕµϕ(st)]
Soft update for the target networks:

21: ϕ′ ← τϕ + (1− τ)ϕ′

22: θ′
i ← τθi + (1− τ)θ′

i for i=1,2
23: end if
24: end if
25: end for
26: end for

start steps steps. We use an LSTM as the actor-network ϕ
and ϕ′ as its target. The double critics are also LSTM networks,
denoted by θ1 and θ2, with θ′1 and θ′2 as their targets. The
learning of both networks happens simultaneously, addressing
approximation error, reducing the bias, and finding the highest
Q-values. The actor target chooses the action a′ based on
the state s′, and we add Ornstein-Uhlenbeck noise to it. The
double critic targets take the tuple (s′, a′) and return two Q-
values as outputs, from which only the minimum of the two
is considered. The loss is calculated with the Mean Squared
Error of the approximate value from the target networks and
the value from the critic networks. We use Adaptive Moment
Estimation (Adam) to minimize the loss.

We update the policy network less frequently than the
value network, taking into account a policy freq factor that
increases over time by the following rule:

policy freq(t) =

⌊(
0.5− t

max steps× 3

)−1⌋

B. Stochastic Deep RL

We also introduce a bias-stochastic actor-critic algorithm
based on SAC [16], that combines off-policy updates with a
stochastic actor-critic method to learn continuous action space
policies. It uses neural networks as approximation functions
to learn a policy and two Q-values functions similarly to
TD3. However, SAC utilizes the current stochastic policy to
act without noise, providing better stability and performance,
maximizing the reward and the policy’s entropy, encouraging
the agent to explore new states and improving training speed.
We use the soft Bellman equation with neural networks as a

function approximation to maximize entropy. The pseudocode
can be seen in Algorithm 2.

Algorithm 2 Deep Reinforcement Learning Stochastic
1: Initialize params of critic networks θ1, θ2 , and actor network ϕ
2: Initialize params of target networks ϕ′ ← ϕ, θ′

1 ← θ1, θ′
2 ← θ2

3: Initialize replay buffer β
4: for ep = 1 to max eps do
5: reset environment state
6: for t = 0 to max steps do
7: if t < start steps then
8: at ← env.action space.sample()
9: else

10: at ← sample from πϕ(·|st)
11: end if
12: st+1, rt, dt, ← env.step(at)
13: store the new transition (st, at, rt, st+1, dt) into β
14: if t > start steps then
15: Sample mini-batch B of N transitions (st, at, rt, st+1, dt) from β
16: ãt ← sample from πϕ(·|st)
17: double = ([mini=1,2(Qθ′

i
(st, ãt))− α log ãt)])

18: Qt = r(st, at) + γ(1− dt) ∗ double
19: Update double critics with one step gradient descent:

∇θi
1
N

∑
st∈B(Qt −Qθi

(st, at))
2 for i = 1, 2

20: if t % policy freq(t) == 0 then
21: Update policy with one step gradient descent:

∇ϕ
1
N

∑
st∈B([mini=1,2(Qθi

(st, ãt))− α log ãt])
22: Soft update for the target networks:
23: ϕ′ ← τϕ + (1− τ)ϕ′

24: θ′
i ← τθi + (1− τ)θ′

i for i=1,2
25: end if
26: end if
27: end for
28: end for

Like before, here we train for (max steps) steps in
(max eps) episodes as well, exploring random actions for
the first (start steps) steps. An LSTM structure was used
for the policy network ϕ. After sampling a batch B from
the memory β, we compute the targets for the Q-functions
Qt(rt, st+1, dt), and update the Q-functions. Also, here we
update the policy less frequently than the value network, using
the same policy freq factor we used in our deterministic
approach.

C. Simulated Environments

Our experiments were conducted on the Gazebo simulator
together with ROS, using the RotorS framework [26] to allow
the simulation of aerial vehicles with different command
levels, such as angular rates, attitude, location control and
the simulation of wind with an Ornstein-Uhlenbeck noise. The
underwater simulation is enabled by the UUV simulator [33],
which allows the simulation of hydrostatic and hydrodynamic
effects, as well as thrusters, sensors, and external perturbations.
With this framework, we define the vehicle’s underwater model
with parameters such as the volume, additional mass, center of
buoyancy, etc., as well as the characteristics of the underwater
environment itself.

We developed two environments that simulate a walled
water tank, with dimensions of 10×10×6 meters and a
one-meter water column. The first environment has four
cylindrical columns representing subsea drilling risers. The
second environment simulates complex structures, like those
found in sea platforms, and contains several elements, such as
walls, half walls and pipes.



D. HUAUV Description

Our vehicle was based on the model presented by Drews-Jr
et al. [1], Neto et al. [2] and et al. [7], [34]. We described it
using its actual mechanical settings, including inertia, motor
coefficients, mass, rotor velocity, and others. A ROS package
containing the vehicle’s description plus the Deep-RL agents
can be found in the Supplementary Material.

The vehicle sensing was optimized to mimic real-world
LIDAR and Sonar. The described LIDAR is based on the UST
10LX model. It provides a 10 meters distance sensing with
270° of range and 0.25° of resolution, simulated using the
plugin ray of Gazebo. Our simulated FLS sonar was based on
the sonar simulation plugin developed by Cerqueira et al. [35].
We described a FLS sonar with 20 meters of range, with a
bin count of 1000 and a beam count of 256. The width and
height angles of the beam were 90° and 15° , respectively. We
obtained these values from the relative localization data using
Rotors’ geometric controller. In the real world, localization
information can be obtained from a combination of standard
localization sensing of hybrid vehicles like Global Positioning
System (GPS) and Ultra Short Baseline (USBL).

E. Network Structure and Rewarding System

The structure of both our approaches has a total of 26
dimensions for the state, 20 samples for the distance sensors,
the three previous actions and three values related to the target
goal, which are the vehicle’s relative position to the target and
relative angles to the target in the x-y plane and the z-distance
plane. When in the air, 20 samples come from the LIDAR. We
get these samples equally spaced by 13.5° in the 270° LIDAR.
When underwater, the distance information comes from the
Sonar. We also get 20 beams equally spaced among the total of
256, and we take the highest bin in each beam. This conversion
based on the range gives us the distance towards the obstacle
or the tank’s wall [36], [37]. The actions are scaled between 0
and 0.25 m/s for the linear velocity, from −0.25 m/s to 0.25
m/s for the altitude velocity and from −0.25 to 0.25 rad for
the ∆ yaw.

1) Reward Function: We proposed a binary rewarding
function that yields a positive reward in case of success or a
negative reward in case of failure or in case the episode (ep)
ends at the 500 steps limit:

r(st, at) =

{
rarrive if dt < cd

rcollide if minx < co || ep = 500
(1)

The reward rarrive was set to 100, while the negative reward
rcollide was set to -10. Both cd and co distances were set to
0.5 meters.

IV. EXPERIMENTAL RESULTS

In this section, the results obtained during our evaluation
are shown. During the training phase, we created a randomly
generated goal towards which the agent should navigate. The
agents trained for a maximum of 500 steps or until they collided
with an obstacle or with the tank’s border. In case of reaching

the goal before the limit of episodes, a new random goal was
generated, allowing the total amount of reward to eventually
exceed 100. A learning rate of 10−3 was used, with a minibatch
of 256 samples and the Adam optimizer for all approaches,
including the compared methods. We limited the number of
episodes trained to 1500 episodes. The limits for the episode
number (max steps) were used based on the stagnation of
the maximum average reward received.

For each scenario and model, an extensive amount of
statistics were collected. The task addressed is goal-oriented
navigation considering medium transition, where the robot
must navigate from a starting point to an endpoint. This task
was addressed in two ways in our tests: (1) starting in the
air, performing the medium transition and navigating to a
target underwater; and the other way around, (2) starting
underwater, performing the medium transition and navigating
to a target in the air. We collected the statistics for each of
our proposed models (Det. and Sto.) and compared them with
the performance of the state-of-the-art deterministic (Det.) and
stochastic (Sto.) Deep-RL methods for HUAUVs, as well as a
behavior-based algorithm [17] . These tasks were performed
for 100 trials each and we recorded the total of successful
trials, the average time for both underwater (t water) and
aerial (t air) navigation and their standard deviations.

The models were all trained in the first environment and
evaluated in both first (same as trained) and second (never seen)
environments. We aim to outline one of the main contributions
of this work, i.e. the robust capacity to generalize of our
method across environments, in this case performing in a
second, unknown and more complex environment. We set the
initial position for the Air-Water (A-W) trials to (0.0, 0.0, 2.5)
in the Gazebo Cartesian coordinates for the two scenarios. The
target position used was (3.6, -2.4, -1.0). In both environments,
the target was defined in a path with obstacles on the way.
Table I shows the results obtained for each environment for
100 navigation trials.

We also performed a complementary comparison in the

TABLE I: Mean and standard deviation metrics over 100
navigation trials for all approaches in all scenarios.

Env Test tair (s) twater (s) Success

1 A-W Det. 76.28 ± 63.20 12.51 ± 20.71 94
1 A-W Sto. 21.79 ± 4.57 25.58 ± 5.70 100
1 A-W Sto. Grando et al. [9] 42.46 ± 62.94 13.13 ± 15.15 42
1 A-W Det. Grando et al. [9] 13.84 ± 2.11 5.44 ± 1.73 100
1 A-W BBA 32.42 ± 1.79 21.27 ± 0.18 100
1 W-A Det. 24.66 ± 10.06 5.0 ± 0.71 83
1 W-A Sto. 79.73 ± 27.91 5.41 ± 0.34 100
2 A-W Det. 61.94 ± 45.29 8.44 ± 9.09 73
2 A-W Sto. 14.89 ± 1.120 18.48 ± 6.24 94
2 A-W Sto. Grando et al. [9] - - 0
2 A-W Det. Grando et al. [9] - - 0
2 A-W BBA 39.69 ± 21.92 11.32 ± 7.46 28
2 W-A Det. 8.54 ± 4.44 4.27 ± 0.47 8
2 W-A Sto. 15.43 ± 13.39 6.60 ± 1.75 10
2 W-A Sto. Grando et al. [9] - - 0
2 W-A Det. Grando et al. [9] - - 0
2 W-A BBA 34.3 ± 22.93 6.13 ± 17.22 8



TABLE II: Mean and standard deviation metrics over 100
navigation trials tested in the second simulated environment,
for both deterministic and stochastic models trained only in the
first environment (Env1), in both first and second environments
(Both), and only in the second environment (Env2).

Model tair (s) twater (s) Success

A-W Det. (Env1) 61.94 ± 45.29 8.44 ± 9.09 73
A-W Sto. (Env1) 14.89 ± 1.120 18.48 ± 6.24 94
A-W Det. (Both) 14.14 ± 3.77 8.69 ± 3.17 99
A-W Sto. (Both) 16.82 ± 2.12 14.92 ± 3.60 100
A-W Det. (Env2) 23.17 ± 31.12 32.53 ± 60.28 21
A-W Sto. (Env2) 19.98 ± 15.99 49.61 ± 27.86 87
W-A Det. (Env1) 8.54 ± 4.44 4.27 ± 0.47 8
W-A Sto. (Env1) 15.43 ± 13.39 6.60 ± 1.75 10
W-A Det. (Both) 25.09 ± 38.86 4.62 ± 0.51 34
W-A Sto. (Both) 33.41 ± 11.82 11.40 ± 2.38 83
W-A Det. (Env2) - - 0
W-A Sto. (Env2) 3.73 ± 2.97 30.47 ± 9.47 1

second scenario. We used the models trained in the second
environment to collect statistics. For a better analysis, we
also performed a comparison between models in this second
environment. First, we collected the data for Deterministic and
Stochastic models trained only in the first environment for
1500 episodes (Env1), as shown before. Then, we trained these
models for 500 more episodes in the second environment (Both).
Lastly, we compared them with Deterministic and Stochastic
trained only in the second environment for 1500 episodes.
Table II shows the obtained results.

V. CONCLUSIONS

The evaluation shows an overall increase in performance
in navigation through both environments. It is possible to see
that our approaches achieve a consistent performance of 100
successful air-to-water navigation trials with also a consistent
navigation time (14.55± 0.87 and 11.19± 2.86). In this same
scenario, the stochastic performed a little worse in air-to-water
navigation but outperformed the deterministic approach in
water-to-air navigation. In the second scenario, we can see
more clearly that a double-critic-based approach with an RNN
structure also has a better ability to learn and generalize the
environment, including the obstacles and the medium transition.
While the state-of-the-art approaches with a MLP structure were
not capable of performing the task, our approaches presented
once again a consistent performance, especially in air-to-water
navigation. Our approaches showed an excellent ability to
learn the tasks and the environmental difficulties, not only the
scenario itself. That was further addressed in our additional
evaluation with agents trained in the first environment only,
both first and second environments and the second environment
only. Overall, we can conclude that double critic approaches
with recurrent neural networks present a consistent ability to
learn through scenarios and environments and to generalize
between them. Also, our approaches outperformed the BBA
algorithm in the rate of successful trials and average time in
almost all situations.

It is important to mention that these approaches are exten-
sively evaluated in a realistic simulation, including control
issues and disturbances such as wind. Thus, the results indicate
that our approach may achieve real-world application if the
correct data from the sensing and the relative localization are
correctly ensured. Finally, it is also possible to analyze that
these new RNN-based approaches provided a more consistent
average course of action throughout the environments.The
evaluation shows an overall increase in performance in naviga-
tion through both environments. It is possible to see that our
approaches achieve a consistent performance of 100 successful
air-to-water navigation trials with also a consistent navigation
time (14.55±0.87 and 11.19±2.86). In this same scenario, the
stochastic performed a little worse in air-to-water navigation
but outperformed the deterministic approach in water-to-air
navigation. In the second scenario, we can see more clearly that
a double-critic-based approach with an RNN structure also has a
better ability to learn and generalize the environment, including
the obstacles and the medium transition. While the state-of-
the-art approaches with a MLP structure were not capable of
performing the task, our approaches presented once again a
consistent performance, especially in air-to-water navigation.
Our approaches showed an excellent ability to learn the tasks
and the environmental difficulties, not only the scenario itself.
That was further addressed in our additional evaluation with
agents trained in the first environment only, both first and
second environments and the second environment only. Overall,
we can conclude that double critic approaches with recurrent
neural networks present a consistent ability to learn through
scenarios and environments and to generalize between them.
Also, our approaches outperformed the BBA algorithm in the
rate of successful trials and average time in almost all situations.

It is important to mention that these approaches are exten-
sively evaluated in a realistic simulation, including control
issues and disturbances such as wind. Thus, the results indicate
that our approach may achieve real-world application if the
correct data from the sensing and the relative localization are
correctly ensured. Finally, it is also possible to analyze that
these new RNN-based approaches provided a more consistent
average course of action throughout the environments.

By using physically realistic simulation in several water-tank-
based scenarios, we showed that our approaches achieved an
overall better capability to perform autonomous navigation, ob-
stacle avoidance and medium transition than other approaches.
Disturbances such as wind were successfully assimilated and
good generalization through different scenarios was achieved.
With our simple and realistic sensing approach that took into
account only the range information, we presented overall better
performance than the state-of-the-art and classical behavior-like
algorithm. Future studies with our real HUAUV are on the
way.
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