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ABSTRACT

Image restoration and image enhancement are critical im-
age processing tasks since good image quality is mandatory
for many image applications. We are particularly interested in
the restoration of ill-exposed images. These effects are caused
by sensor limitation or optical arrangement. They prevent the
details of the scene from being adequately represented in the
captured image. We proposed a deep neural network model
due to the number of uncontrolled variables that impact the
acquisition. The proposed network can converge in a repre-
sentative model from the training data, loss, optimization and
activation functions. The obtained results are evaluated using
several image quality index which indicate that the proposed
network is able to improve images damaged by heterogeneous
exposure. Furthermore, our method offers a significant gain
over the state-of-the-art methods both in simulated data and
real data.

Index Terms— Saturation, Image restoration, Image en-
hancement, Neural networks, Clipping

1. INTRODUCTION

During image acquisition, clipping is a common type of dis-
tortion which limits the signal representation once it exceeds
a threshold. Clipping occurs when a signal is recorded by a
sensor that presents limited acquisition range of light inten-
sity. This phenomenon interferes in bright regions, resulting
in overexposure, and dark regions of the scene, resulting in
underexposure. In general, overexposure and underexposure
are caused by poorly adjusted camera aperture, exposure time,
or gain. Especially in high contrast scenes, adjusting these
settings is not trivial, thus being prone to error.

Clipped pixels contain less information about the scene
than other pixels. While non-saturated pixels can be linked to
the incident irradiance by reversing the radiometric response
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function, saturated pixels only provide a lower limit to ir-
radiance [1]. Large saturated regions pose a challenge for
many classic computer vision algorithms, including popular
edge detector, primitive descriptors, and feature extractors.
Fourier-based reconstruction approaches also suffer from se-
vere artifacts [2] in the case of sensor saturation.

Estimating the irradiance of an improperly exposed image
requires restoration and enhancement of the non-clipped pix-
els to maximize visibility and color accuracy, as much as it
requires reconstruction strategies for regions where the signal
has been clipped. In this sense, Deep Learning models over-
come the limitations of classical image enhancement methods
by being able to learn objects, textures, and patterns from ex-
amples. With the advantage of semantic information and prior
knowledge extracted from a large set of images, a neural net-
work is able to improve the image restoration results.

We present a Convolutional Neural Network (CNN) ap-
proach for single-shot contrast enhancement and image re-
construction for ill-exposed RGB images. Our neural archi-
tecture takes inspiration on the works of [3] and [4]. The
network is designed to widen the receptive field while keeps a
small number of trainable parameters when compared to other
state-of-the-art networks with similar purposes. The main
contributions of this paper are summarized as follows: i) We
present a fast and small exposure correction CNN which is
able to synthesize substantial clipped parts in high-resolution
image; ii) We design a custom content-based objective func-
tion to maximize restoration and reconstruction on clipped re-
gions; and iii) We provide quantitative and qualitative results
on both under and over-exposed images, outperforming re-
cently proposed methods.

2. RELATED WORKS

The problem of luminance and color correction for ill-
exposed images mixes aspects from signal restoration, de-
noising, contrast enhancement, color correction and tone
mapping, image completion, and feature interpolation. Thus,
the literature includes histogram equalization [5], shadow
compensation [6], dehaze-based contrast enhancement [7],



Retinex based contrast enhancement [8], camera response
based models [9], and exposure fusion based models [10].

The previous approaches rely only on the signal that is
properly captured on the input image. While contrast en-
hancement is a task effortlessly performed by the aforemen-
tioned methods, our approach also benefits from the knowl-
edge learned from the training data. This allows our model
to generalize based on examples presented during the model
adjustment to better interpolate on regions where the signal is
reduced or lost.

3. DATASETS

This work intends to minimize the effects of saturation and
underexposure on natural images. Therefore, we made use of
two datasets (one real, one simulated) to train and evaluate
the network. This enables us to further explore the behavior
of our model under both real and simulated conditions.

3.1. A6300 Multi-Exposure Dataset (real)

The A6300 Multi-Exposure Dataset, previously introduced
by us in [11], is composed of sets of four images for each
scene: a properly exposed using a single shot, an underex-
posed, an overexposed, and an Image Composition of the
aforementioned using [12] Tone Mapping method. The over-
exposed and underexposed images are obtained through ex-
posure compensation using aperture priority, with exposure
value (EV) ranging from EV -0.7 up to EV +0.7.

The dataset is acquired using a Sony A6300 camera and
images are stored using JPEG compression. The lossy JPEG
compression introduces additional challenges since: i) gen-
eral loss of sharpness and oscillations around high-contrast
edges, due to approximating intensity transitions with cosines
functions; ii) blocking structure, as each image is processed
separately for every 8x8 block, block edges become visible at
high compression ratios; and iii) loss of color details due to
compression on chromaticity channels. Although the down-
sides of JPEG compression are well known, this format is still
the prevailing storage format for images. Thus, being a great
baseline for real applications.

3.2. FiveK-based Multi-Exposure Dataset (simulated)

The MIT-Adobe FiveK Dataset [13] features 5,000 images
taken with SLR cameras by a set of different photographers.
The images are made available in DNG file format, a lossless
raw image format. Therefore, all the information recorded by
the camera sensor is preserved. This dataset does not present
multi-exposure image pairs, therefore requiring preprocessing
in order to be used for training.

For training, we prepare our image pairs by converting
the DNG file to RGB representation and clipping the values
according to a percentile, as shown in Eq. 1, where I is the

reference image, I is the saturated image, Prr and Py are
the percentile values which define lower and upper bounds for
the hard clipping.

Prr, I;; < Prr
Cij =< L, Prr <I; <Pyr (1)
Pyr, I;; > Pyt

The clipping operation is followed by a min-max normal-
ization to extend the value range over the entire representation
interval:

Cij == m'm(C)
mazx(C) —min(C)’

I= 3]

Although this approach lacks in reproducing some of the
saturation effects, such as blooming [1], it results in severe
image damage. Thus, posing a considerable challenge in
terms of restoration and reconstruction.

4. REEXPOSE-NET CNN MODEL

U-Nets [3] have recently shown great potential for image-
to-image tasks [14]. Nonetheless, one significant drawback
which affects all U-Net inspired models is the amount of re-
quired memory to store the partial results in the intermediate
layers. This occurs due to the intensive use of skip connec-
tions, which require the early layers of the processing (en-
coder) to be stored as an input for the decoder layers.

We propose a new architecture based on ideas presented
in [3], [11], and [15]. This new model minimizes the mem-
ory requirements of the network and improves the results for
image exposure correction. The network uses atrous convolu-
tions and trainable down-scaling and up-scaling layers. Thus,
we significantly improve the prediction accuracy and increase
the size of each batch during the training stage. Fig. 1 shows
an abstraction of the network architecture.

4.1. Atrous convolutions

Image-to-image reconstruction, as other dense prediction
tasks, calls for multiscale contextual reasoning in combina-
tion with full-resolution output [4]. In this sense, dilated
convolutions can provide very large receptive fields with-
out requiring large kernels nor deep stacks of convolutional
layers. Our convolutional block includes four 3 x 3 paral-
lel atrous convolutional layers, with dilatation rates ranging
from 2° up to 23. Thus, each convolutional block is able to
cover 19 features in the input space using only nine trainable
weights for each filter. Atrous convolutions provide context
aggregation for each pixel by allowing the model to access a
large region in the neighborhood, allowing us to reduce the
amount of scaling layers in the network.



Network Architecture
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Fig. 1. The ReExpose-net architecture.

4.2. Down-sampling and Up-sampling

Spatial down-scaling is an essential component of our model
leading to lower memory usage and wider receptive fields.
Through experimental evaluation, we found that learned
down-scaling through strided convolutions perform better
than polling layers, especially in large saturated regions.
Spatial up-scaling becomes necessary in this context since
feature maps need to be re-scaled to the original input im-
age size. Further exploration has shown that nearest neighbor
interpolation followed by convolution result in fewer checker-
board artifacts on the output images. This fact has also been
reported by [16].

4.3. Activation Function

All hidden convolutional layers in the CNN model are fol-
lowed by an Exponential Linear Unit (ELU). Through exper-
iments, we have found it significantly speeds up the learning
process and leads to overall higher image quality. Firstly in-
troduced in [17], an ELU activation is given by:

x>0

z<0 )

a(e” —1),
ELUs ability to result in negative values allow them to
push the mean unit activation closer to zero, speeding up
learning because they bring the gradient closer to the unit nat-
ural gradient [11]. We also use a ReLU non-linear activation
function on the output layer to avoid negative outputs. ReLU

is defined as:
g(z) = max(z,0). )

4.4. Loss Function

We adopted a custom loss function that emphasizes the image
regions with values closer to the sensor limits to maximize
the reconstruction and signal restoration accuracy. Our ob-
jective function combines Structural Dissimilarity (DSSIM)

and Pixel-wise Euclidean Distance (Ls). DSSIM is based on
SSIM [18], a similarity index calculated on various 3 x 3 win-
dow of an image.

Although DSSIM provides great insight on the image
quality, the index is unable to assess the pixel values in the
exact position. Therefore, our objective function also consid-
ers the pixel-value in the reference image. Via element-wise
multiplication, we reinforce the importance of the pixels that
are more likely to be affected by ill-exposure conditions. As-
suming images a and b are in the representation interval [0, 1],
with an empirical constant A = 0.2, the final loss function is
given by:

L(a,b) = A|0.5—b|o Ly(a, b) +(1—A)DSSIM(a,b). (5)

4.5. Training and Early Stopping Criteria

Initially, we reserve 30% of each dataset for the testing stage
to ensure that our supervised learning model is able to gen-
eralize. All trainable weights are initialized using the Glorot
uniform initializer [19]. The model is trained using the Adam
optimization algorithm with its default parameters. Training
is stopped once 300 batches are processed without yielding
an improvement larger than 10~° on the validation loss. The
same stopping criterion is also applied to the baseline models.

5. COMPARATIVE RESULTS

In this section, we compare our method with image en-
hancement methods from the literature on the test data.
Our quantitative evaluation includes several image quality
measurements, including classic Peak Signal-to-Noise ratio
(PSNR), Structural Similarity (SSIM) [18], Mean Absolute
Error (MAE), as well as less popular Gradient Magnitude
Similarity deviation (GMSD) [21], Sobel intersection over
union, and histogram difference. Tab. 1 shows that our
approach outperforms histogram based image enhancement



FiveK Dataset [13] with hard clipping
PSNR MAE SSIM Sobel IoU | Canny IoU | Hist. Diff | GMSD
Ours 2.359E+01 | 6.234E-02 | 9.142E-01 | 7.991E-01 | 6.229E-01 3.246E-03 | 2.025E-05
U-net [3] 2.186E+01 | 7.563E-02 | 8.559E-01 | 6.777E-01 | 5.150E-01 3.417E-03 | 3.303E-05
Can24 [15] | 1.922E+01 | 1.235E-01 | 8.316E-01 | 6.923E-01 | 4.687E-01 | 5.007E-03 | 4.292E-05
DHE [5] 1.529E+01 | 1.581E-01 | 7.300E-01 | 5.548E-01 | 3.005E-01 | 4.890E-03 | 8.671E-05
Ying [9] 1.503E+01 | 1.887E-01 | 7.240E-01 | 6.087E-01 | 3.797E-01 | 5.580E-03 | 6.751E-05
Fu [20] 1.579E+01 | 1.673E-01 | 7.544E-01 | 6.278E-01 | 3.486E-01 | 5.113E-03 | 6.275E-05
None 1.853E+01 | 1.463E-01 | 7.776E-01 | 7.450E-01 | 5.938E-01 | 4.569E-03 | 4.674E-05
A6300 Dataset [11] with multiexposure bracketing
Ours 1.780E+01 | 1.233E-01 | 8.628E-01 | 6.148E-01 | 3.903E-01 | 5.754E-03 | 3.707E-05
U-net [3] 1.640E+01 | 1.481E-01 | 8.332E-01 | 5.551E-01 | 3.536E-01 | 6.674E-03 | 4.376E-05
Can24 [15] | 1.404E+01 | 2.045E-01 | 7.987E-01 | 5.287E-01 | 3.321E-01 | 7.493E-03 | 5.310E-05
DHE [5] 1.436E+01 | 1.836E-01 | 7.810E-01 | 5.314E-01 | 3.006E-01 | 6.941E-03 | 9.072E-05
Ying [9] 1.312E+01 | 2.595E-01 | 7.756E-01 | 5.915E-01 | 3.509E-01 | 7.846E-03 | 8.189E-05
Fu [20] 1.153E+01 | 2.946E-01 | 7.241E-01 | 5.387E-01 | 3.273E-01 8.534E-03 | 9.466E-05
None 9.666E+00 | 3.419E-01 | 5.722E-01 | 4.584E-01 | 2.213E-01 | 9.365E-03 | 1.164E-04

Table 1. Quantitative results show our method outperforms prior approaches in terms of color and gradient enhancement.

Fig. 2. Sample results for overexposed and underexposed im-
ages in the test set. Left to right: input, the restored image,
and the reference.

methods [5], camera response based methods [9], probabilis-
tic methods [20], and prior convolutional networks [3, 15]
trained with the same conditions.

Deep Learning based restoration outperforms the deter-
ministic algorithms on both datasets. Furthermore, we also
notice a slight difference between the results for simulated
data and real data. Results on the A6300 dataset show that
all compared methods contributed to improving the PSNR
and SSIM. For the FiveK simulated image set, we notice that
[5, 9, 20] actually worsened the overall image condition, re-
sulting in more noise and lower similarity with the reference
image.

Qualitatively, Fig. 2 shows a few outputs of the network
for severely over/underexposed images. We notice a signif-
icant improvement in element visibility, texture restoration,
and re-colorization. In large regions where all three channels
are clipped, we notice that our model is yet unable to restore
the smoothness of the surface, resulting in images that pre-
serve the block artifacts of the JPEG compression. Overall, a
subjective evaluation highlights the robustness and effective-
ness of the proposed method for challenging ill-exposure con-
ditions. A more comprehensive qualitative comparison with
baseline methods can be found in the supplementary material.

6. CONCLUSIONS AND FUTURE WORKS

We propose ReExpose-net, a new CNN-based model de-
signed to maximize signal restoration and feature reconstruc-
tion of poorly exposed RGB images. Numeric and qualitative
evaluation using two distinct datasets has shown our model
significantly better in terms of brightness adjustment, con-
trast enhancement, image completion, and edge restoration.
As future research, we intend to refine the smoothness of
reconstructed regions (de-blocking), texture synthesis, and
completion of large clipped using semantic features.
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