
A Digital PID Controller Using RTAI

R. S. Guerra, H. J. Gonçalves Júnior, W. F. Lages

Federal University of Rio Grande do Sul,

Electrical Engineering Department

Av. Osvaldo Aranha 103, Porto Alegre RS, CEP 90035-190, Brazil
rsguerra@eletro.ufrgs.br, hermes@eletro.ufrgs.br , w.fetter@ieee.org

Abstract

This work presents an implementation of a digital PID (Proportional + Integral + Differential) con-
troller in a PC machine running RTAI. PID controllers are well known and have a wide range of applica-
tions in the control of analog processes such as servomotors. The well implemented PID controllers are
usually hard real time systems. The PID controller described in this work uses the PC parallel port as an
analog I/O interface. Just two bits are used as ‘analog’ interfaces through a technique called Pulse Width
Modulation (PWM). This technique allows an analog interface to be built without the use of conventional
A/D and D/A converters. Real time tasks were provided by threads under LXRT hard real time mode.
The implementation of PWM under RTAI using the timing functions provided by RTAI are presented
and the convenience of using these functions for actual real time control is discussed. In particular, the
semantics of rt sleep() is analyzed in detail and it is shown that the current semantics can lead to a
confusing interpretation of what a periodic task is and what a task period is. Furthermore the current
semantics of rt sleep() is incompatible with the semantics of rt busy sleep(), which can lead to even
more confusion. A new semantics for rt sleep() is suggested.

1 Introduction

1.1 The PID Controller

A feedback controller is designed to generate an out-
put that causes some corrective effort to be applied
to a process so as to drive a measurable process vari-
able, y(t), towards a desired value, known as the set-

point or reference, here noted r(t). The concept is
based, as shown in figure 1, on the re-input of the
system own output according to certain laws (hence
the name ‘feedback’). It is desired for the system
output to follow the reference r(t). All feedback con-
trollers determine their output by observing the dif-
ference, called error, here noted e(t), between the set-
point and the actual process variable measurement.
This theory is valid for a wide class of systems, which
include, but is not restricted to, linear systems [1].

FIGURE 1: Feedback Control System

For the class of the linear systems, a very widely used

controller is the PID (Proportional Integral Differen-
tial). The PID looks at (a) the current value of the
error, (b) the integral of the error over a recent time
interval, and (c) the current derivative of the error
signal to determine not only how much of a correc-
tion to apply, but for how long. Each of those three
quantities are multiplied by a ‘tuning constant’ and
added together [1]. Thus the PID output, c(t), is a
weighted sum as shown in figure 2:

FIGURE 2: PID Controller



Depending on the application one may want a faster
convergence speed or a lower overshoot. By adjust-
ing the weighting constants, kp, ki and kd, the PID
is set to give the most desired performance [1].

1.2 The Digital PID Controller

As explained so far we considered time continuous
domain and analog variables. Today, digital con-
trollers are being used in many large and small-scale
control systems, replacing the analog controllers [5].
It is now a common practice to implement PID con-
trollers in its digital version, which means that they
operate in discrete time domain and deal with ana-
log signals quantized in a limited number of levels [1].
The trend toward digital rather than analog control
is mainly due to the availability of low-cost digital
computers [5]. A digital version of the PID controller
is shown in figure 3:

FIGURE 3: Digital PID Controller

In its digital version, the integral becomes a sum and
the differential a difference. The continuous time sig-
nal e(t) is sampled in fixed time intervals equals a
determined sample period, here called Tc (in figure 3
Tc = 1). An A/D (analog to digital) converter inter-
faces the input and a D/A (digital to analog) con-
verter interfaces the output. This sampled and dig-
italized input, called eD[j], exists only in time in-
stants t = kTc for all k ≥ 0 ∈ Z. It is assumed that
these digital values are processed instantly and the
result is posted immediately, which obviously is not
true. Even if it is possible to deliver the results faster
from time to time it is most desirable to maintain a
fixed and rigid sample period [1].

Then it is desirable for the controller (a) to have the
sample period Tc as small as possible and (b) to have
as many levels of quantization as possible. A lower
bound for the sample period is the computing time of
a whole cycle of the digital PID (which includes the
A/D and D/A conversion). In most practical situa-
tions noise filtering may imply another lower bound
for the sampling period. The number of levels of
quantization of the input and output analog variables
will depend on the resolution of the A/D and D/A
converters respectively. Converters of high resolution
are expensive. Helpfully the state-of-the-art technol-
ogy in the field of the microprocessors makes possible
to have good computation time with low cost hard-
ware [5].

1.3 The PWM Technique

Analog voltages and currents can be used to con-
trol processes directly. As intuitive and simple as
analog control may seem, it is not always econom-
ically attractive or practical. Analog circuits tend
to drift over time and can, therefore, be very diffi-
cult to tune. By controlling analog circuits digitally,
system costs and power consumption can be drasti-
cally reduced. Pulse Width Modulation (PWM) is
a powerful technique for controlling analog circuits
with digital signals [4].

PWM is a way of encoding digitally analog signal
levels. The duty cycle of a square wave is modulated
to encode a specific analog signal level, as shown in
figure 4. The PWM signal is still digital because, at
any time instant, it is either on or off. The rela-
tion between the on-time and the off -time varies ac-
cordingly to the analog level to be represented. The
analog level is obtained through a series of on and
off pulses. Given a sufficient bandwidth, any analog
value may be encoded with PWM [3].

FIGURE 4: An example of PWM wave

The cycle period must be short if compared to the
process response time to a change in the switch state
[4].

The mean value of the PWM wave corresponds to
the analog value it represents, proportionally to the



wave duty cycle. A process with slow time response
(if compared with the PWM period) may naturally
decode the PWM signal into the analog signal it rep-
resents dispensing a ‘PWM decoder’. In fact, PWM
decoding is actually done through a low-pass filter-
ing, either naturally when the process has this effect,
or maybe forced low-pass filtering if the process does
not have this effect.

2 Methodology

The authors have implemented a Digital PID Con-
troller in a standard PC machine running Linux-
RTAI. It was used a Linux-2.4.18 kernel patched
with the RTAI-24.1.9 . The I/O was done by PWM
through two pines of the parallel port: one for input
and the other for output, dispensing the analog-to-
digital converter which is the most expensive compo-
nent in a data-acquisition system [5]. The PWM cod-
ing/decoding has been dealt by software routines im-
plemented in Linux threads with LXRT RTAI hard
real time constraints. The main routine, which is
responsible for the actual PID calculation, has also
been implemented in a thread with hard real time
constraints. The communication between threads
was made through global variables shared with mu-
tual exclusion, guaranteed by semaphores. The next
sub-sections explain each part in detail.

2.1 The PID Task

The PID task is the core of the application, where
the controller calculation is actually made. The PID
controller receives as input the error, given by

e(t) = r(t) − y(t) (1)

and computes the control variable c(t) which is its
output. The PID controller has three terms: (a) the
proportional term P corresponding to proportional
control, (b) the integral term I giving a control ac-
tion that is proportional to the time integral of the
error, and (c) the derivative term D, proportional to
the time derivative of the error. The control signal
c(t) is calculated as follows [1]:

c(t) = kpe(t)
︸ ︷︷ ︸

P

+ ki

∫ t

0

e(τ)dτ

︸ ︷︷ ︸

I

+ kd

de(t)

dt
︸ ︷︷ ︸

D

(2)

It is common to define kp = K, ki = K/Ti and
kd = KTd [1]. Then the following well known ‘text
book’ version of the equation arises:

c(t) = K

(

e(t) +
1

Ti

∫ t

0

e(τ)dτ + Td

de(t)

dt

)

(3)

It is necessary to discretise the controller, that is,
to approximate the integral and derivative terms to
forms suitable for computation by a computer. From
a purely numerical point of view we can use:

de(t)

dt
≈

e(t) − e(t − Tc)

Tc

(4)

∫ t

0

e(τ)dτ ≈ Tc

k∑

n=0

e(nTc) (5)

In the above equations, Tc is the sampling period and
in equation 5 it is assumed that k = bt/Tcc. Notice
that equations 4 and 5 give us unbiased estimators
as Tc → 0. By this way the equation 3 may be ap-
proximated by:

c(kTc) = K

(

e(kTc) +
Tc

Ti

k∑

n=0

e(nTc) +

Td

e(kTc) − e((k − 1)Tc)

Tc

)

(6)

The discrete PID equation comes from equation 6, by
referencing the iterations instead of the time, that is,
substituting f(kTc) by f [k]. Then, the discrete PID
equation is:

c[k] = K

(

e[k] +
Tc

Ti

k∑

n=0

e[n] + Td

e[k] − e[k − 1]

Tc

)

(7)
This particular form of the PID algorithm is known
as the positional PID controller.

The figure 5 shows the sequence of operations for the
PID task [1].

FIGURE 5: PID Task Diagram



2.2 The PWM Task

The PWM task is responsible for two things:

1. for encoding the PID digital output, which is
stored in a variable, into an external PWM
wave signal measurable through a parallel port
pin, and;

2. for decoding an external PWM wave signal, in-
put through another parallel port pin, into a
digital signal, which will be stored in another
variable, to be the PID feedback.

This can be done by dividing a whole PWM cycle
into several fixed time intervals, each one hard real
time constrained, as illustrated in the figure 6. In
this case the PWM instant signal value is to be con-
sidered either on or off within an interval, allowing
changes to be made or acknowledged only between
these intervals. By doing so, the represented analog
signal is quantized in as many levels as many divi-
sions were made.

FIGURE 6: PWM cycle divided in n fixed

time intervals

Let’s call the PWM period Ts. If the PID has a
lower update frequency than the PWM output wave,
which means Tc > Ts, then several PWM pulses
will be generated before the PID completes a cycle,
which is generally the case. On the other hand, being
Tc > Ts, in order to read the PWM input wave, de-
tecting just one of these pulse widthes within a PID
period would be sufficient. This is shown in figure 7.

FIGURE 7: General case: Tc > Ts

2.2.1 Special case: Tc = Ts

Let’s suppose the PWM cycle period as being the
same as the PID cycle period, that is Tc = Ts. Then
every PWM output pulse needs to be generated, and,
in this case, each PWM input pulse needs to be read
because there will be only one PWM pulse per PID
cycle (See figure 7 for Tc = Ts). Breaking down this
Ts period into n fixed time intervals, as shown in
figure 6, means that a whole PWM would need to
be generated and read piece by piece in a periodic
cycle with period Ts/n. A way of implementing this,
is shown in the block diagram of figure 8. Note that,
since there will always be a writing and a reading,
this can be done in the same loop.

FIGURE 8: Block diagram of the PWM

task for Tc = Ts

2.2.2 General case: Tc > Ts

For the general case, where Tc > Ts, it is useful to
treat the reading procedure and the writing proce-
dure separately.

For the PWM input wave reading, one never knows
exactly where the change from on to off will occur.
Due to this fact, the reading must be done in the
polling fashion of the block diagram of figure 8.

In general, the PWM I/O wave period will be sev-
eral times fewer than the PID cycle period [4]. In
this case the computational burning of this polling
process may be attenuated because it is necessary to
read just one of the several PWM input wave cycles,



to be feeded to the PID within his period. During
this Ts period, the input pin will be checked cycli-
cally, as many times as many levels one wants for
the numerical precision, but only once in Tc, freeing
resources periodically during Tc − Ts seconds. It is
summarized as follows:

1. create a periodic task with period Tc;

2. read the state of the parallel input pin, which
will correspond to 1/n of the total PWM input
value;

3. ‘sleep’ a Ts/n period;

4. do item 2 and 3 n times;

5. wait for the next task period, Tc.

For the PWM output wave writing, it is always
known a priori where the change from on to off will
take place. With this information one may avoid the
computational burning of the cyclic loop, which, in
the case of the writing, would be done not only once
within a PID period, but for every PWM pulse gen-
eration. The alternative solution for writing may be
as follows:

1. create a periodic task, with period Ts;

2. in the beginning of the loop, turn on the PWM
output pin of the parallel port;

3. make this task ‘sleep’ for a period equivalent to
the desired on time of the PWM output wave
form;

4. immediately after the sleep, switch the on to
off and wait until the end of the Ts period;

5. go to item 2.

The advantage is to free the CPU while the task
‘sleeps’. By this way it is possible to have a better
quantization without the computational burning of
the polling approach.

3 Analyzing ‘sleeping’ RTAI

Functions

As shown in the PWM reading and writing pro-
cedures, sometimes it is desirable to make a task
‘sleep’. To do this, there are three different RTAI
functions [2]: (a) rt busy sleep(), (b) rt sleep()

and (c) rt sleep until(). The first one ‘sleeps’
without freeing resources, while the last two do it
freeing resources. The functions rt sleep() and
rt sleep until() differ only in that for the first one,
it is given the time period the task will sleep, while

for the second one, it is given the absolute time until
the task will need sleep, but internally the imple-
mented code is almost the same.

When called, the function rt busy sleep() sums
the current time plus the period it is desired to sleep,
storing the result. Then a while keeps comparing
this stored time to the current time. When the cur-
rent time passes the stored time the function pro-
ceeds. The implemented code, file rtai sched.c, is
as follows:

void rt_busy_sleep(int ns) {

RTIME end_time;

TRACE_RTAI_TASK(TRACE_RTAI_EV_TASK_BUSY_SLEEP,

ns,0,0);

end_time = rdtsc() +

llimd(ns, tuned.cpu_freq, 1000000000);

while (rdtsc() < end_time);

}

No change is made on the task period, but, as the
name of this function suggests, the CPU remains
busy while ‘sleeping’, which is not desirable for the
PWM writing and reading procedures.

The rt sleep() and rt sleep until() functions
free the CPU while the task ‘sleeps’. These func-
tions do so by using the same structure which
rt task wait period() uses, that is: it reprograms
the task resume time, here called Tr. The function
rt sleep() changes the resume time to be the sum
of the current time plus the desired sleep time:

Tr[k] = Tnow + Tsleep (8)

The code implemented in the rtai sched.c file is as
follows:

void rt_sleep(RTIME delay) {

unsigned long flags;

TRACE_RTAI_TASK(TRACE_RTAI_EV_TASK_SLEEP,

0, delay, 0);

hard_save_flags_and_cli(flags);

if ((rt_current->resume_time =

(oneshot_timer ? rdtsc():rt_times.tick_time)+

delay) > rt_time_h) {

rt_current->state |= DELAYED;

rem_ready_current();

enq_timed_task(rt_current);

rt_schedule();

}

hard_restore_flags(flags);

}



It works well, but there is a big inconvenience in do-
ing this: it does change the task resume time which
is used for the task period calculation. The function
rt task wait period() is in charge of maintaining
the periodic task being called periodically. This is
done by reprogramming the task resume time to be
its previous resume time plus the task period:

Tr[k + 1] = Tr[k] + Tp (9)

The code of this function is also in the rtai sched.c
file, as follows:

void rt_task_wait_period(void) {

unsigned long flags;

TRACE_RTAI_TASK(TRACE_RTAI_EV_TASK_WAIT_PERIOD,

0, 0, 0);

hard_save_flags_and_cli(flags);

if (rt_current->resync_frame) {

rt_current->resync_frame = 0;

rt_current->resume_time = rt_get_time();

} else if ((rt_current->resume_time +=

rt_current->period) > rt_time_h) {

rt_current->state |= DELAYED;

rem_ready_current();

enq_timed_task(rt_current);

rt_schedule();

}

hard_restore_flags(flags);

}

If no other function changes the resume time Tr[k],
for other purpose it does work well. But if
rt sleep() has been called within the task pe-
riod, then the last resume time Tr[k] has been re-
placed by the ‘sleep’ resume time, and as a con-
sequence this value is summed with the task pe-
riod Tp to calculate the next resume time in the
rt task wait period() function. Implemented this
way, rt sleep() does change the task period, which
is not desirable and is incompatible with the seman-
tics of the rt busy sleep().

The main problem of this current implementation is
that the control variable Tr actually plays two very
distinct roles:

1. It acts as a way of controlling the scheduler for
the next task shot, and;

2. It acts as a reminder of the time when the last
period shot happened.

It is desirable for a ‘sleep’ function to make the task
wait for a given delay Tsleep without changing its
period Tp, that is: the ‘sleep’ time must also be ac-
counted for the task period calculation. In order to
preserve the task period, it must not be under the

influence of other functions changes in the task re-
sume time Tr. There are many ways of solving this
problem. The authors point three:

1. The rt task wait period() function could
find the next task resume time Tr[k] by cal-
culating Tr[k] = T0 + k × Tp, where T0 is the
absolute time of the first task shot;

2. The rt task wait period() function could
keep track of the time of the periodic shots, as
it actually does, but in another auxiliary vari-
able, say Taux, instead of doing this directly on
the resume time Tr. The time of the next shot
would then be calculated as the sum of Taux,
which stores the last period shot, with a task
period Tp (equation 10). The result would then
be copied to Tr (equation 11);

Taux[k + 1] = Taux[k] + Tp (10)

Tr[k + 1] = Taux[k + 1] (11)

3. The functions which change the task resume
time (i.e. rt sleep(), rt sleep until()),
could store Tr before changing it, and then re-
store this previous value before going on.

The first solution is elegant and robust and has also
the advantage that it does not imply in changing the
code of those other functions which change the task
resume time Tr. To make it possible one needs to
store the time of the task first shot, T0. The next
task resume time may be found without explicitly
knowing k. The next task resume time would be

Tr[k] = {b(Tnow − T0)/Tsc + 1} × Ts (12)

where ‘b·c’ denotes the floor function. Obviously,
the equation 12 does not necessarily correspond to
the optimal code implementation for its calculation.

The second solution also does not change the code
of the other functions which may change the task re-
sume time Tr, and has a simpler mathematical imple-
mentation (a sum), but must keep updating a control
variable in the memory. It intends to maintain the
same idea of the current implementation, but treat-
ing the resume time variable only as means of setting
the time of the next shot, making the period cal-
culation with another auxiliary variable Taux. Once
the period has been calculated and stored in Taux, as
shown in equation 10, it can be copied to Tr. By this
way both variables, Taux and Tr, would be equal, ex-
cept when another function, say rt sleep(), needs
to resume the task earlier (before completing a pe-
riod). In this case this another function may change
Tr. This does not change the task period because the
period is summed with the time stored in the aux-
iliary variable, which may only be changed for the
purpose of the next period computation.



4 Conclusion

As shown, by using RTAI, it is possible to build a
PWM based PID controller directly in a PC ma-
chine running a standard Linux distribution without
the need for external hardware, except maybe for an
analog to PWM converter to the input in some cases.
This is a very flexible and low cost controller and has
application in most of the usual control environments
(i.e. servomotors, temperature control). Depending
on the sample period associated and on the PWM
resolution, the PC CPU may still be shared with
other non-realtime applications such as graphic en-
vironments, text editors, etc.

Problems with the semantics of the ‘sleeping’ com-
mands of RTAI were pointed and some possible so-
lutions were presented.

By changing the control algorithm, the structure of
this application may be expanded to implement other
feedback controllers (i.e. optimal control, adaptive
control). It is also possible to run MIMO (multiple-
inputs-multiple-outputs) control systems, or several
independent SISO (single-input-single-output) sys-

tems, by making use of more parallel port pins.

References

[1] ÅSTRÖM, K. and HÄGGLUND, T. , 1995, PID

Controllers: Theory, Design, and Tuning, Instru-
ment Society of America, ISBN 1-55617-516-7.

[2] BIANCHI, E., DOZIO, L. and MANTEGAZZA,
P. , 2000, A Hard Real Time supportfor LINUX,
DIAP-RTAI Documentation.

[3] BIRD, B. M., KING, K. G. and PED-
DER, D. A. G. , 1993, An Introduction to

Power Electronics, John Wiley and Sons Ltd.,
ISBN 0 471 92616 7; 0 471 92617 5 (pbk)

[4] MOHAN, N., UNDELAND, T. M. and ROB-
BINS, W. P. , 1995, Power Electronics, John Wi-
ley and Sons Ltd., ISBN 0 471 58408 8 (cloth)

[5] OGATA, K. , 1995, Discrete-Time Con-

trol Systems, Prentice-Hall International, Inc.,
ISBN 0-13-328642-8.


