#HHEAN AITHBEES
Japanese Society for
Artificial Intelligence

AILHEEEESARSER
JSAI Technical Report
SIG-Challenge—-A701-4 (5/4)

Successful Teaching of Agent-Based Programming to Novice
Undergrads in a Robotic Soccer Crash Course

Rodrigo da Silva Guerra !, Joschka Boedecker !, Hiroshi Ishiguro'?, Minoru Asada !
! Graduate School of Engineering, Osaka University, Osaka, Japan
2 JST Erato Asada Project

{rodrigo.guerra, joschka.boedecker,ishiguro,asada}@ams.eng.osaka-u.ac.jp

Abstract

This work describes a method for introducing
agent based programming concepts as a hands-
on experience targeted at inexperienced stu-
dents learning C as their first programming lan-
guage. The approach is based on three main
features: (a) a simplified C interface to the
RoboCup 2D soccer simulation framework; (b)
a strict agent-centered polar vector arithmetics
approach for describing soccer skills and agent
behaviors; and (3) on a tournament at the
end of the course to give students an oppor-
tunity to evaluate their programs against one
another in a fun environment. We present data
of our experience performing a five-day (15h)
course with sixty second-year engineering bach-
elor students who had just barely learned the
basics of computer programming. We show
how, based on the described scheme, students
with very limited computer programming expe-
rience became able to develop their own teams
of autonomous agents, in some cases includ-
ing concepts such as dynamic role-assignment,
multi-agent coordination, and team formation.
We defend the method presented here helps
exposing the students to valuable experience
ahead of their normal schedule, and boosting
overall motivation and performance.

1 Introduction

Even though using real and virtual robots in engineer-
ing related courses is known to boost motivation of
students [1, 12, 5, 4], care needs to be taken in the
course design to minimize the many practical prob-
lems of working with the robots or simulation environ-
ments. This is especially true for students with lit-
tle programming experience. In this paper, we present
the contents and results from a very short introduc-
tory level programming course for undergraduate en-
gineering majors using simulated robotic soccer as a

framework to teach agent-based programming, and to
give students an opportunity to get hands-on experience
putting to work the programming skills they had just
barely learned. The approach we chose corresponds to
what Lund [8] terms guided constructionism, i.e., a com-
bination of traditional constructionist approaches [10,
11] and explicit guidance in forms of lectures and coach-
ing by more experienced students.

We built the course around the 2D soccer simulator [9]
which has been widely accepted as a standard research
and educational platform for multi-agent applications.
Numerous works using this tool have been carried out,
including both scientific level research papers (e.g. [7,
14, 13]) and agent programming courses (see e.g. [2,
5]). This helped making this system a robust platform
for testing ideas in multi-agent disciplines. However, de-
spite of its wide-spread and general acceptance, the two-
dimensional simulation framework is still rather com-
plex, requiring the kind of specialized knowledge typical
of programmers with rather mature experience. While
such complexity often regards features without which in-
teresting multi-agent problems could not be properly at-
tacked, this same complexity also comes as an obstacle to
the non-experienced programming beginners as pointed
out in [2, 5].

We believe the limited programming skills of students
should not prevent them from experimenting with the
basic concepts of agent-based programming. On the
contrary, we think allowing these students to experi-
ment with their first codes already in such a dynamic
and motivating environment helps boosting their learn-
ing of programming concepts as they become necessary
for producing more elaborate autonomous soccer teams.
Aimplified interface to program the agents was created
making it possible to cope with a very narrow time frame
of only 5 sessions (each of 3 hours duration) with lectures
and programming work plus an additional separate ses-
sion for a class tournament.

The rest of the paper is organized as follows: Sec-
tion 2 describes the simplified C-interface around which
the course was formulated. Section 3 shows in detail
the strict vectorial approach which worked as the cen-

21

tral conceptual tool for programming the agents. Sec-
tion 4 present specific details about the organization of
the course. Section 5 gives some qualitative impressions
from the authors based on the obtained results. Finally,
sections 6 summarizes the main contributions of the pa-
per and discusses directions future works.

2 The Simplified C-Interface

We prepared a set of wrapping functions allowing stu-
dents to implement their code in a very compact and
simplified way requiring only the use of standard C code.
The idea is similar to that of RoboSoc [6], but with a
much stronger focus on simplicity — at the price of loosing
generality. These wrapping functions were constructed
around the Trilearn base code published in 2002 [3].

The whole environment provided by the Trilearn base
code was wrapped into four control functions and a
few sense/act functions. Some of the sense/act func-
tions were simple wrapping of existing C++ functions
of the original code while others were implemented from
scratch or heavily simplified. The four control functions
are described below:

e pv_init — Includes all initialization procedures that
should happen before the main loop in order to pre-
pare the agent and including initial communication
with the server. The only argument passed to this
function is the desired team name;

e pv_update — Includes all the necessary routines for
parsing messages received from the server and up-
dating the internal world model of the Trilearn base
code. This function is called inside the main loop
right at the beginning, so that actualized sensor val-
ues can be assured;

e pv_flush — Takes all accumulated action com-
mands, assembles them into messages and sends
them to the server so that the agent can actually
perform them. This eliminates the burden of send-
ing the commands every time an agent takes a deci-
sion. Should be called in the last instruction inside
the main loop;

e pv_close — Performs all procedures necessary for
finishing the program, de-allocating resources.

The listing 1 shows an example of a complete agent
which is capable of passing the ball to a teammate (vari-
able names are consistent with figure 1). Together with
our strict vector approach (which is detailed in section 3)
this simplified interface enabled the students with very
little programming experience to program a variety of
soccer playing behaviors in a very clear and intelligible
way.

3 The Vector Arithmetics Approach

Most people learn basic operations with vectors already
at school. Vector arithmetics are visually intuitive, espe-
cially in the two dimensional space, where calculations
can be approximated by sketching simple strokes on a
piece of paper. More than that, the analogy of the soc-
cer field as a two-dimensional space gives a very straight

Listing 1: Example of a simple ”passing” agent

#include <cinterface .h>
int main(int argc, char xargv][])

{
struct strct_vector c;
struct strct_vector e;
pv_init (?MyTeam”);
while (pv_update())
¢ = pv.getball ();
e = pv_getteammate (1);
if (pv_cankick())
{
pv-kick(e);
} else {
pv_steerto(c);
}
pv_flush ();
}
pv_close ();
}

forward interpretation for directions and magnitudes of
two-dimensional vectors which can represent forces, ac-
celerations, velocities of players and ball. In fact, this
approach is so straight forward that it is very common
to see implementations involving two-dimensional vector
arithmetics of some kind across the various RoboCup
Soccer leagues.

In our approach we developed a complete framework
where all essential elements necessary for making a team
of soccer playing agents could be implemented by the
exclusive use of two-dimensional vector arithmetics and
nothing else. Moreover, we took care of describing all
necessary components relative to the self in an agent-
centered approach excluding completely explicit global
coordinates of any sort. This agent-centered perspective
allows a deeper understanding on the agent perspective
embodied with sensors and immerse in the environment.

In the figure 1 we illustrate how one can take advan-
tage of the two-dimensional vector representation for a
very visual strategy planning. Suppose, for instance,
your agent were to mark an opponent by placing itself
between the opponent and the ball. The vector from
the ball to the opponent, according to the figure 1, is
given by the expression ¢ — d. One could simply scale
down this vector, let’s say, half-way (ng), and sum to
the vector representing the direction to the ball, yielding
the expression %. This last expression would be the
direction the agent should go. Similarly, if an agent were
to kick the ball (c) into the center of the goal (25®), it
would need to go towards ¢ + (¢ — &52)(r, + 1), where
r and 7, are the radius of the robot and the ball respec-
tively (compare with the previous expression).

A web-based applet was developed in Java as a tool
for helping the students draw their vector arithmetics
on the screen of the computer and test their ideas on
different game situations. See figure 2 for a screen shot.

To our understanding this simplified vector approach
provides a powerful unifying interpretation which can be
used across for a variety of very different soccer robots.

22

opponent
left goal
teammate
ball -
b
- ¢ é
a
self
Figure 1: An example of game situation where all

necessary elements can be visualized in terms of two-
dimensional vectors

File

Add \fector

Add Object
Edit

Vector: H v
Name: |H
Angle: |6
Length: 257

Vector Operation: [((A+E)2)+C | Execute |

b \

Figure 2: Screen shot of the Java vector applet developed
for enabling students to visualise their different strate-
gies and check resulting expressions.

See below some examples of very straight forward inter-
pretation in the case of the most popular platforms.

Omni-directional camera: Suppose the vertical axis
of revolution of the omni-camera is normal relative to
the horizontal plane (of the field) and fixed in the robot
(which is often the case). The center of the revolved
image is the origin for the two-dimensional vector repre-
sentation. Radial distances from the origin in the image
have direct mapping into distances from the robot body.

Projective camera: For the sake of simplicity lets as-
sume square pixels, pinhole model, and center of projec-
tion on center of image (usually very practical approx-
imation when it comes to non-precision robotics). One
can assume a simple mapping from the distances of ar-
bitrary image points to the center of the image into the
corresponding horizontal and vertical angles of their re-
spective rays (taking the pinhole as the vertex). See
figure 3. The horizontal angle a give the direction of the
two-dimensional vector while the vertical angle 3 gives

Figure 3: Example of simplified pinhole camera. One
can find a simple mapping from the distances = and y
to the corresponding angles o and 3 respectively. In the
two-dimensional vector approach the angle o gives the
direction and the magnitude is given by d = f(3). This
relation is derived by simple trigonometry

a direct mapping into distances on the floor (assuming
camera is at constant high).

Pan & Tilt: Consider, images on the center of pro-
jection of the camera. Pan angles can be used directly
as the directions of the two-dimensional vectors while
tilt angles map into distances in the floor. The pinhole
camera attached to the pan & tilt mechanism can be ap-
proximated by simply summing pan and tilt angles with
horizontal and vertical camera angles respectively.

Control theorists experienced in mobile robotics would
probably still argue it is not so straight forward to derive
control laws when you have non-holonomic restrictions
in the mobility of the robots (e.g. two wheeled differ-
entially driven robots). Such problems have been focus
of constant research in the past years due to the chal-
lenging control problem they represent (i.e. closed-form
solution does not exist). But here again, this should not
come as an obstacle to the learner who is eager to put
a robot into movement into a simplistic and practical
experiment — otherwise all beginners in robotics would
require robots equipped with omni-wheels.

In the original two-dimensional simulation framework
agents are moved by the sucessive use of dash & turn
commands, for, respectively, turning and moving for-
ward the agent’s position. We implemented an interface
which mimics the effect of having differential wheels (i.e.
transforming the fictitious wheel velocitys into a corre-
sponding series of dash & turn commands). This was
done in an effort for keeping the virtual agent as closely
related as possible to the most typical robotic architec-
tures — at the price of restricting the original (less real-
istic) maneuverability of the agents.

In our simulated differential driven robot the velocity
of each wheel could be set into three different constant
values, both backward and forward, or zero (stopped).
In such case, for example, (+3,+3) would make the
robot go forward, (+2, —2) would make the robot spin
clockwise and (+3,+1) would make the robot go in an
arc-trajectory to the direction forward/right. In order
to face the problem of steering the robot into arbitrary

23

(+2,+3) (+3,+2)

(-3,+3)

(+3,-3)

Figure 4: State machine implementing a simple steering
algorithm for a two-wheeled differential driven robot

locations we implemented a simple state-machine. See
figure 4. This approach was chosen for being simple and
effective enough so that the student with their limited
experience in programming (and robotics) could easily
understand and eventually improve their agent’s nav-
igatibility by customizing their own steering methods.
This way they not only could understand and use very
realistic robots in their experiments but also had contact
with a state-machine for decision making in their code.

4 Course Format

The course was performed at the Osaka University dur-
ing the month of March of 2007 to an audience of 62
second-year engineering students (amoung which only 4
were females). It was composed by five separate lectures
of three hours each, given twice a week plus an extra
sixth lecture where the tournament was realized. The
overall program of the class is summarized in the table
1.

Except for the first class, which was almost completely
theoretical, all the other classes were build around the
student exercise and practice. In the end of each class
a homework was a assigned, which would involve and
stretch concepts learned in class, but also bring up is-
sues which would only be formally introduced in the next
class. This was done in order for them to experience the
needs before trying the solution, so that when the so-
lution was presented its value could be more promptly
understood. For instance, students would compile using
the command prompt in the first class, but be introduced
to Makefiles in the second class, and they would imple-
ment different skills (such as passing) inside their main
loop in the second class but learn how to create more
generic parameterized functions in the third class, and
so forth. Despite all the theory being not completely new
to them (they came fresh from a theoretical introduction
to programming), it takes quite a lot of practice and ex-
perimentation until they can really put their knowledge
into work in such a dynamical situation.

Content summary

1st | Introduction, review of concepts of
vector arithmetics, basic agent
programming concepts

2nd | Introduce the most elementary code,
explain the use of a simple Makefile,
start working on very atomic behaviors
(e.g. kick to goal and run to the ball)

3rd | Start generalizing these atomic behaviors
with the introduction of simple functions
(e.g. find closest teammate)

4th | Make the agent even more versatile
introducing dynamic role assignment and
general changes of behavior according to
things such as own-id, side of play, etc.

5th | Divide the class in groups of four
students and start developing their own

teams for the final tournament.

6th | Tournament

Table 1: Summary of the course program

5 Results

A questionnaire was formulated in order to help evalu-
ating the evolution of the interests and degree of con-
fidence of the students in three main aspects: (a) pro-
gramming, (b) robotics and (c) soccer. The question-
naire was distributed twice, firstly before the first class
and again later, after the first round of games during
the tournament. This questionnaire was extensive and
composed by several multiple choice questions. In these
questions students had to classify their interests, previ-
ous experience and self-confidence on many criteria re-
garding themes directly or indirectly related to the con-
tents of the course. The speculations discussed in this
section are based on the results of this questionnaire, to-
gether with the collected homework, the final team code
and a final report.

To our surprise, all students were unanimous in that
they had never even heard about the term ”agent pro-
gramming” before. On the other hand, when asked
to list from the top of their heads names of robots
and soccer players, robots like ASIMO and AIBO were
cited more often than the most often cited soccer player
(which was Ronaldinho). The authors interpret this as
an strong indication that robotics is a rather popular
subject among young engineering students in Japan.

At the end of the course, despite the fact that we
didn’t talk about real robots during any of the practical
classes, students showed that they have increased signif-
icantly their confidence about how much they believed
they could make a real robot play soccer. See figure 5.

24

(c)

Figure 5: Results of the pool where students were invited
to self-evaluate to what extent they believed they could
make a real robot play soccer (a) when asked before and
(b) when asked after the course, and similarly for mak-
ing (c) an artificial agent play soccer after the course.
The five columns in each chart represent the total num-
ber of students that chose each of the corresponding five
options, which were, from left to right: (1) can nothing
at all, (2) can do almost nothing, (3) can do a little, (4)
can do well, (5) can do very well. (the neutral option
was explicitly omitted)

Furthermore a much bigger number of students declared
to have become more interested in both robot soccer
and agent programming. Moreover, in the end of the
course we found a very strong correlation between their
confidence on their own agent programming skills with
their confidence on how much they believed they could
make a real robot play soccer (compare charts in figure
5-b and 5-c¢). On our interpretation the above indicates
that, although we worked only with a very simplistic two-
dimensional simulation environment, the students could
still relate this to a broader concept applicable to real
robots.

Furthermore, the authors noticed the positive effects
of the tournament on the motivation of the students,
which were often verbally expressed on their final re-
ports, and also rather evident when reviewing the videos
recorded during the tournament.

6 Discussion

This work presented an effective approach for exercising
basic programming skills in the very dynamic environ-
ment of soccer simulation in a very short period of time.
The method here presented together with the observed
results support the idea that limitations on programming
skills do not prevent students achieving their goals in the
complex and dynamic multi-agent environment.

During the class we collected some strong evidence
of the popularity of robotics among the students. For
future work we plan to investigate how the (eventual) use
of real robots in class would influence their performance

if compared to the data collected during this course in
which we used simulation only. Moreover, we plan to
make our evaluation methods conform to suggested [12]
standards thus enabling easy comparison of results.

7 Acknowledgements

The authors would like to thank to Chisato Yoshida
for her help on the empirical portions of the work, to
Matthias Bohnen for developing the nice Java applet for
helping on vector arithmetics, to the teaching assistants
for their great help both during the classes and later on
analysing the collected data, and to the students them-
selves for their collaboration and understanding. The au-
thors also want to thank JSPS and JST and the Japanese
Ministry for Sports and Education for their financial sup-
port.

References

[1] John Anderson and Jacky Baltes. An agent-based
approach to introductory robotics using robotic soc-

cer. International Journal of Robotics and Automa-
tion, 21(2):141 — 152, April 2006.

[2] S. Corradeschi and J. Malec. How to make a chal-
lenging ai course enjoyable using the robocup soccer
simulation system. In RoboCup-98: Robot Soccer
World Cup II, Lecture Notes In Artificial Intelli-
gence. Springer, 1998.

[3] Remco de Boer and Jelle R. Kok. The incremental
development of a synthetic multi-agent system: the
uva trilearn 2001 robotic soccer simulation team.
Master’s thesis, University of Amsterdam, 2002.

[4] Barry S. Fagin and Laurence Merkle. Quantitative
analysis of the effects of robots on introductory com-
puter science education. ACM Journal of Educa-
tional Resources in Computing, 2(4):1-18, Decem-
ber 2002.

[5] Frederik Heintz, Johann Kummeneje, and Paul
Scerri. Simulated robocup in university undergrad-
uate education. In RoboCup 2000: Robot Soccer
World Cup IV, Lecture Notes In Artificial Intelli-
gence, pages 309 — 314. Springer, 2001.

[6] Fredrik Heintz. Robosoc, a system for developing
robocup agents for educational use. Master’s the-
sis, Dept. of Computer and Information Science,
Linkopings Univ., 2000.

[7] Jelle R. Kok and Nikos A. Vlassis. Using the max-
plus algorithm for multiagent decision making in co-
ordination graphs. In RoboCup 2005: Robot Soccer
World Cup iX, Lecture Notes in Artificial Intelli-
gence, pages 1-12. Springer, 2006.

[8] Henrik Hautop Lund. Robot soccer in education.
Advanced Robotics, 13(8):737-752, 1999.

[9] I. Noda, H. Matsubara, K. Hiraki, and I. Frank.
Soccer server: A tool for research on multiagent

25

[12]

[14]

systems. Applied Artificial Intelligence, 12:233-250,
1998.

S. Papert. Mindstorms: Children, Computers, and
Powerful Ideas. Basic Books, New York, 1980.

S. Papert. Constructionism: A new opportunity for
elementary science education. A proposal to the
National Science Foundation. Massachusetts Insti-
tute of Technology, Media Laboratory, Epistemol-
ogy and Learning Group., 1986.

Elizabeth Sklar, Simon Parsons, and Peter Stone.
Using robocup in university-level computer science
education. ACM Journal on Educational Resources
in Computing, 4(2), 2004.

Frieder Stolzenburg, Oliver Obst, and Jan Mur-
ray. Qualitative velocity and ball interception. In
Proceedings of the 25th Annual German Conference
on AI: Advances in Artificial Intelligence, Lecture
Notes In Computer Science, pages 283 — 298, 2002.

Peter Stone. Layered Learning in Multiagent Sys-
tems: A Winning Approach to Robotic Soccer. MIT
Press, 2000.

26

	第25回研究会資料
	表紙
	目次(1～12)
	目次(13～15)
	A701-1
	A701-2
	A701-3
	A701-4
	A701-5
	A701-6
	A701-7
	A701-8
	A701-9
	A701-10
	A701-11
	A701-12
	A701-13
	A701-14
	A701-15

	裏表紙

