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Abstract We introduce Dimitri, an open-software & open-
hardware humanoid robot with 31 DOFs, fitted with cost-
effective modular compliant joints and parallel link legs,
designed for advanced human-robot interaction research,
force-informed object handling and intelligent environment
discovery. Our main innovation is in the design of a robust
full-body biped humanoid robot equipped with very low-
cost polyurethane torsional spring fixed to traditional servo
motors and a circuit to measure angular displacement, trans-
forming the system into a series elastic actuator (SEA). In
order to illustrate the robot’s qualities in the field of machine
learning applied to robotics and manipulation, a multiple
timescale recurrent neural network (MTRNN) is imple-
mented, allowing the robot to replicate combined movement
sequences earlier taught via interactive demonstration.
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1 Introduction

This paper introduces Dimitri, an open humanoid robotic
platform equipped with inexpensive modular SEAs joints.
This article includes and extends the design presented
by the same authors during the 2016 Latin American
Robotics Symposium [1]. The main new contributions of
this manuscript are: (1) the design of the legs, with parallel
joint mechanisms for both upper and lower legs with addi-
tional pitch actuators to independently move ankle and hip
joints, and (2) the more detailed modelling of the springs
employed in our proposed SEA actuators.

Conventional robots used in assembly lines are intended
to perform decoupled motions following pre-calculated
paths, while neglecting perturbations from the environment.
Those characteristics are generally accomplished by utiliz-
ing extremely rigid joint mechanisms, massive link designs
and potent actuators.

Lately, on the other hand, advances in human-robot inter-
action have added the urge for reliable and compliant force-
informed manipulators. Beside being intrinsically safer,
these light and flexible mechanisms support the design of
intelligent manipulation with coupling constraints and force
sensing.

The emergence of various open hardware humanoid
robots caused the development of a large community of
researchers and enthusiasts who share and collaborate with
each other (see [2] for a review).

We aimed to create a tough humanoid robot suited for
experimentation on smart compliant handling of objects
with torque sensing and secure human-robot interaction.
Dimitri’s construction is uncomplicated, modular and cost-
effective making it easy to maintain and customize. The
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SEAs joints allow the handling of manipulation prob-
lems that require compliance and torque feedback. Envi-
ronmental dynamics can be accounted for, by examin-
ing the constraints they infringe to the manipulators,
sensed through torque feedback. By sensing and control-
ling the force applied during manipulation, a model of
the movement constraints imposed by the environment is
developed.

For assessing the robot in the domain of its intelligent
manipulation capacity, we decided to perform an evalu-
ation experiment adopting a multiple timescale recurrent
neural network (MTRNN) [12], selected thanks to its capa-
bility of learning dynamic movement plans, training lower
level primitive abilities and arranging these abilities in goal
directed policies, at a higher level of abstraction. To show
the robot’s sturdiness we carried out an evaluation experi-
ment exploring its robustness against abrupt collisions.

The remaining of this article is arranged in this way:
Section 2 introduce technical characteristics regarding
Dimitri’s software and hardware; Section 3 explains the
MTRNN experiment and presents its results; and Section 4
shows the conclusion and discussion.

Fig. 1 Dimitri’s full body with embedded computer and legs

Fig. 2 Upper torso version

2 Methodology

Dimitri was designed with the goal of creating a robust
robot that allows studies on fields related to state-of-the-
art compliant torque-aware manipulation and human-robot
interaction at an affordable cost.

2.1 Robot Details

The humanoid robot presented at Figs. 1 and 2 was con-
ceived to be an open-source and open-hardware, with all
its source code, electronic schematics and CAD design of
the mechanical parts available on GitHub1 and other details
provided upon request.

The robot’s frame is made of carbon fiber and aluminum
plates with 3 mm thickness. Aluminum parts were bent
using a CNCmachine (but other materials and manual bend-
ing are also possible). For aesthetic reasons the cylindrical
parts used in the arms are milled in a CNC lathe. The
arm joints employ series elastic actuators, with torsional
springs made of polyurethane milled aluminium fixtures,
including an electronic circuit for measuring rotation (the
SEA is described in Section 2.2). Table 1 presents Dimitri’s
main specifications. Figure 3 and Table 2 show the robot’s
Denavit-Hartenberg parameters.

The popular Dynamixel MX-106R and MX-64R motors,
manufactured by Robotis, were chosen for the joints, adopt-
ing the first model for legs, arms and waist, and the second
model for the neck joint. They are networked together with
the SEAs’ feedback circuit using a RS-485 bus running the
Dynamixel protocol2. An embedded NUC computer is used
to handle communication with the actuators and SEAs at
1Mbps using a RS-485 to USB adapter. The SEAs support

1https://github.com/TauraBots
2http://support.robotis.com/en/product/actuator/dynamixel/
communication/dxl packet.htm

https://github.com/TauraBots
http://support.robotis.com/en/product/actuator/dynamixel/communication/dxl_packet.htm
http://support.robotis.com/en/product/actuator/dynamixel/communication/dxl_packet.htm
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Table 1 Robot’s technical details

Physical specifications

Height 1241.79 mm

Reach 542.5 mm

Weight 13.3 kg

DOFs 31

SEA joints 8 (4 in each arm)

Max payload 2.5 kg

Servomotors MX-64R and MX-106R

Frame material Aluminium and carbon fiber

Computer

CPU Core i5 4th gen. 4250U

Memory DDR3L 1333MHz 8GB

Storage SSD mSATA 120GB

Control bus
Interface USB 2.0
Channels 4
Bus & protocol RS-485 Dynamixel 1.0
Baudrate 1Mbps

Camera
Model Point Grey FireFly MV
Resolution 1280 × 960
Frame rate 60FPS
Lens mount CS & C

Energy supply
Voltage 12.6 Volts DC
Consumption 1960 Watts

torque based modelling and object handling. The motors
offer up to 10N.m of stall torque, sufficient to manipulate
light items.

The upper and lower legs of Dimitri are both designed
with a parallel link mechanism (see Fig. 4). The links were
outlined in such way to permit the legs to fold completely,
in a crouching position. Furthermore, to enable feet pitch
and leg pitch, separate actuators were added to hip and ankle
joints. This couples the toughness of the parallel mecha-
nism with the flexibility of full pitch control of legs and
feet. Additionally, the modular SEA springs are added to
knee joints, allowing studies on flexible and energy efficient
walking algorithms.

2.2 Series Elastic Actuator

This humanoid robot’s most unique features are its SEA
joints. Figure 5 shows how the compliant actuator is assem-
bled3. This SEA [9] is essentially composed by classic rigid
actuator in series with a torsion spring coupled to the load.

3The figure shows the joint of a knee, however the same design is used
in all arm joints.

This permits the motor to be softly coupled to the load,
and the exerted torque to be measured by evaluating the
spring’s angular displacement. Our SEA design is a tor-
sional spring designed to be attached to the Dynamixel
actuators MX-64R andMX-106R, produced by Robotis (for
further details see [6] and [7]). This robotics servo actua-
tor was selected due to its good worldwide reputation in the
field of robotics, however the same concept can be modified
for compatibility with different servo actuators of compara-
ble design. The compliant component is composed of two
parts, employing a rotational spring designed using thermo-
plastic polyurethane (TPU), an elastomer (see Fig. 7). TPU
is affordable, resilient, effortless to cut using a CNC router,
and it displays rubbery flexibility [3]. This is a very inex-
pensive architecture since it can be readily fabricated using
a simple CNC milling machine. The outline of the spring
was conceived so as to support wide angular deformation to
both directions, with a linear torque/angle ratio over the full
extent of torque provided by its actuators. Figure 6 shows
the simulated spring deformation at maximummotor torque.

For estimating spring stiffness, known weights were sus-
pended on a bar of known extent, attached to the output
of the spring, and the angular displacement �θ was eval-
uated. The torque was calculated for each weight using
τ = F l = mgl cos(�θ). The procedure was reiterated for
20 distinct values of weights and the outcome is displayed
in Fig. 8.

The experiment confirmed the spring behaved linearly
within the tested range. The coeficients of a line following
the equation y = p1x+p2 were estimated to be p1 = 10.49
and p2 = 0. The slope of this line represents the inverse
of the stiffness, so, the value for the torsional stiffness is
k = 1

10.49 = 0.09Nm/deg.
In order to evaluate the dynamic behavior of the spring,

a step response experiment was performed by releasing a
known weight onto the lever and measuring the angular
displacement of the compliant element over time. For this
experiment, the motor was kept stationary, letting the result-
ing angular movement to be produced by the compliant
element. The step response is shown in Fig. 9.

The system behaves as a spring with a high damping con-
stant. We used Matlab System Identification Toolbox and
our experimental data set in order to identify the transfer
function:

G(z) = 8.431z

z2 − 0.743z + 0.4229
(1)

More details regarding modelling and control of the SEA
can be found in our previous work [7].

In addition to offering compliance and torque feedback
for intelligent manipulation tasks, the intrinsic flexibility of
the SEA joints allow the robot to withstand sudden impacts,
making it very tough and safe for human interaction.
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Fig. 3 Denavit-Hartenberg
diagram of reference

Table 2 Denavit-Hartenberg parameters right leg and right arm

i θi di (cm) ai (cm) αi

00 θ0 0 0 0

01 θ1 0 4.5 0

02 θ2 5 0 π/2

03 θ3 = θ4 0 4 0

04 θ4 = θ3 0 21 0

05 θ5 = θ6 0 10.5 0

06 θ6 = θ5 0 25 0

07 θ7 0 3.75 0

08 θ8 3.6 0 − π/2

09 θ9 9.6 9.4 π/2

10 θ10 6 0 π/2

11 θ11 0 0 π/2

12 θ12 0 11.5 − π/2

13 θ13 8 0 π/2

14 θ14 14.5 0 π/2

15 θ15 0 18.2 − π/2

16 θ16 5.5 0 π/2

17 0 0 9.4 0

2.3 Software Details

The code for controlling Dimitri’s regular joints and SEAs
is published under the MIT open-source license. There are
two versions of the software, one written in C++ and

Fig. 4 Left: Legs with parallel link mechanism. Middle: Separate
pitch joints for feet and hip allow independent adjustments. Right:
Each leg link ends in a 45deg angle, allowing the robot to completely
fold its knees, resulting in the sitting position shown in the right
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Fig. 5 Knee joint assembly with four SEA, including exploded view.
The components are: (1) circuit board, (2) leg link frame, (3) attach-
ment cover, (4) polyurethane torsional spring, (5) Dynamixel MX-106
servo actuator. Illustration adapted from [7]

another in Python, both base codes depending just on stan-
dard Linux/Unix system libraries. The exception is for
vision processing where OpenCV dependencies are used.
Figure 10 shows the class diagram. The class Joint han-
dles the interface with the servo actuators. Deriving from
it, the ElasticJoint adds support to the springs elec-
tronic circuit and it applies a PID controller to the actuators.
Series of instances of Joint are grouped in the class
JointChain producing the waist, the neck and the arms.
The JointChain instances are all combined in the class
Dimitri, representing the whole robot.

3 Experiments and Results

This section reports a MTRNN experiment designed
for evaluating Dimitri’s potential for cognitive robotics
research.

Fig. 6 Finite element analysis of von Mises stress

Fig. 7 Manufactured polyurethane-based torsional spring

3.1 MTRNN Implementation

The multiple timescale recurrent neural network (MTRNN)
is a kind of recurrent neural network designed with lay-
ers of neurons of distinct time constants, allowing it to
self-organize itself in a hierarchy of abstraction levels. Neu-
rons of fast context (FC) have a lower time constant, while
neurons of slow context (SC) have a higher time constant.
Comparable to the work of [12], input and output layers are
exclusively connected to FC units. Every output unit in our
model has time constant of 1, without any recurrent connec-
tions. Foreign input states are collected by input neurons and
their anticipated states are developed by output neurons.

Neuron activations are computed according to a standard
firing rate model where the activity of every neuron requires
the mean firing rate of other units, and the neuron’s decayed
inner value depends on the former time step as presented in
Eq. 2.

ui,t+1=
(
1− 1

τi

)
ui,t + 1

τi

⎛
⎝∑

j

wij cj,t +
∑
j

wikxk,t +bi

⎞
⎠ (2)

Fig. 8 Estimated stiffness
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Fig. 9 SEA step response

where ui,t is the ith neuron value at time t, wij is the con-
nectivity weight from context neurons ith to jth, wik is the
connection weight from ith neuron to kth input, cj,t is the
value of the activation of jth context neuron at time t, xk,t

is the value of the kth external input unit at instant t, bi rep-
resents the ith neuron’s bias, and τi is its constant of time.
When the neuron is a SC unit, the last summation term dis-
appears, because there aren’t any connections to inputs. The
weights of the connections between context units (wij ) are
bidirectional, and every neuron is connected to one another.

3.1.1 Input and Output Mapping

A softmax transform is applied to map every input yi,t to a
space of higher dimension yij,t conform the adjacent receptive

Fig. 10 Simplified UML class diagram

fields of same length. The transformation is described in
Eqs. 3 and 4 [4].

yij,t =
exp

(−||kij −ji,t ||2
σ

)
∑

j∈Z exp
(−||kij −ji,t ||2

σ

) (3)

where kij represents the the ith dimension of the jth neuron
from the actual input, yi,t is the ith dimension of the value
of the input before conversion at time t, σ sets the silhouette
of the distribution (we used 0.05), and yij,t is the trans-
formed vector. The following equation calculates vectors of
reference

kij = BMin
i + BMax

i − BMin
i

l(i) − 1
(j − 1) (4)

whereBMax
i andBMin

i represent the maximum and the min-
imum values for the ith component of the input, respectively,
and l(i) represents the dimension of the reference vector.

Each real input was transformed into the higher dimen-
sion of 11 after conversion. This was done independently for
each input, which in our experiment resulted in 110 softmax
input dimensions because 10 real input dimensions were
used.

For calculating the ith component of the output unit, we
use the inverse softmax transformation as shown in Eq. 5

yi,t =
∑
j∈Z

yij,t kij (5)

3.1.2 Generation and Training Methods

The context neurons internal dynamics demonstrated in
Eq. 2 are achieved according to typical firing rate. In
order to compute the forward dynamics context out-
put values, we used the activation function ci,t+1 =
1.7159 tanh(0.667ui,t+1). Eqs. 6 and 7 compute the output
unit’s forward dynamics

uij,t+1 =
∑

l

wij lcl,t + bij (6)

yij,t+1 = exp
(
uij,t+1

)
∑

k exp(uik,t+1)
(7)

where uij,t+1 is the inner state of the jth softmax output
matching to the ith output, wijl is the connection weight
from the lth FC neuron to the jth softmax output matching to
the ith output, cl,t is the activation of the lth context neuron,
bij is the bias of the jth softmax output matching to the ith
output, and yij,t+1 is the jth softmax output matching to the
ith output at time t+1.

We used an ordinary back-propagation through time
(BPTT) training method for the neural network [10]. The
learned attributes are updated so as to minimize the Kullbak-
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Leibler divergence (notedE) amongwanted and real activation
values of the softmax output neurons (respectively ȳi,t+1

and yi,t+1), following the Eq. 8

E =
∑

t

∑
i∈O

yi,t+1 log(
ȳi,t+1

yi,t+1
) (8)

Biases, weights and initial states, labelled θ , approach their
optimal values following the direction opposite to the gradi-
ent ∂E

∂θ
, and are updated according to

∇θ(n + 1) = μ∇θ(n) − α
∂E

∂θ
(9)

θ(n + 1) = θ(n) + ∇θ(n + 1) (10)

where α is the learning rate, defined as 0.00003, and μ is the
momentum, defined as 0.9. Equations regarding gradients
of initial biases, weight and states can be checked in [8].

The MTRNN uses an open-loop generation for training,
where the neural network gets the current inputs from the
environment and generates several subsequent prediction
steps of the output. Initial states, biases and weights are ran-
domized from an uniform distribution on the interval [- 1

M
,

1
M
] at the start of the training, where M represents the count

of context neurons in the experiment. The closed-loop gen-
eration mode referred as the mental simulation of actions [5,
11] is different because it uses the present predicted output
on the next time input. Figure 11a and b are schematics for
the open-loop and closed-loop generations respectively, the
l is the count of sequential predictions of the output that the
MTRNN generates for each presented input.

3.2 MTRNN Experiment

The MTRNN allowed the robot to learn and generate com-
bined movement patterns. Three combined gestures were

Fig. 11 Plans for (a) open-loop and (b) closed-loop generation. ST
and IST are abbreviations for softmax transform and its inverse,
respectively

trained by holding the robot’s hand and demonstrating the
desired order of movements. A colored cube of dimensions
60×60×60 mm was placed on a table in front of the robot.
The object was tracked by adjusting the neck’s angles of
pitch and yaw – this job was performed using an OpenCV
framework. The robot always began to acquire the training
data from the same initial pose. During training, the torques
of both arms joints (8 DOFs) were set to low values while
the waist joints were fixed with a high torque to allow the
arms to move easily when a movement pattern was being
demonstrated. The two vision inputs we used were the neck
pan and tilt angles.

Three standard movement sequences were determined:
(1) Pushing an object using one hand (PUSH); (2) Touching
an object with one hand (TOUCH); and (3) Hitting the table
taking turns with both hands (HIT). Rather than training
each sequence independently, these were trained in combi-
nations of two successive sequences. The combined patterns
were:

(A) HP4 / PUSH / HP / HIT / HP
(B) HP / TOUCH / HP / HIT / HP
(C) HP / TOUCH / HP / PUSH / HP

The three sequences of combined gestures were performed,
and their corresponding data series were recorded, always
beginning with the colored object on one of three distinct
locations in the y coordinate (center; 9 cm up; 9 cm down),
adding up to 9 training sequences. Afterwards, we used the
the data of the recorded patterns for trainning the MTRNN.
The model consisted of 20 SC units, 40 FC units, 110 soft-
max output units and 110 softmax input units (softmax
units were produced from 10 components, 8 representing
arm SEAs and 2 representing neck angles, as mentioned
in 3.1.1). The constants of time were defined as 5 and 100
for FC and SC units, respectively. Only the initial states
of SC units were allowed to be changed during training,
whereas the initial states of FC units were kept equal to
zero. Initial states of SC neurons had distinct values at every
training sequence. This means MTRNN could be trained
to generate multiple sequences by correlating initial states
with their corresponding sequences. Training ran for 85000
epochs generating 5 forward prediction steps (l = 5) of the
input series, generated in open-loop.

3.3 MTRNN Results

The MTRNN was used to control Dimitri’s arm after
the training was successfully finished. The joints of the

4HP stands for Home Position
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Fig. 12 Outcome of the MTRNN experiment for combined prototypical movement patterns. RR: Right Arm Roll, RP: Right Arm Pitch, RY:
Right Arm Yaw, RE: Right Arm Elbow, and likewise for left arm with LR, LP, LY and LE

robot were fixed and the neck angles were assigned to
track the object, returning the values as network’s exter-
nal visual inputs. The MTRNN computed the reciprocal
arms joint angles carrying out a closed-loop generation.
In other words, the system was in a state of semi-closed
loop (arms joints were in closed-loop, but vision inputs
were in open-loop). The MTRNN was evaluated for objects
in 3 different initial positions and vision inputs for all 9
movement schemes. The robot managed to successfully
generate all movement schemes. Figure 12a, b and c show
the results of a single initial position in the y coordinate.
The transitions among primitive sequences can be noted on
the graphs of the first row, which represent the dynamics
of the angles of the arms joints. The middle row repre-
sents the activities of a sample of 10 SC neurons, and
the last row represents the activity in the FC units of
a sample of 10 neurons. For the sake of clarity, vision
inputs (pan and tilt angles) are not shown. A self-organized
functional hierarchy can be noticed to emerge, since the fre-
quency differs so that activations in SC neurons showed

slower dynamics enabling us to see the broader modula-
tion regulating the commutation among different movement
sequences, while activities in FC units had faster dynam-
ics, encoding the specific servo paths for every primitive
movement sequence. A mental simulation of the combined
models was possible to be performed by setting initial states
of the SC neurons, with closed-loop generation, discon-
nected from any inputs. Dimitri successfully produced all 9
sequences.

3.4 Robustness Experiment

In order to demonstrate Dimitri’s robustness, provided by
its SEA joint’s passive compliance, a brick of 2.57 kg was
dropped from a 50 cm over the robot’s left arm end-effector,
as it can be seen in Fig. 13. The brick’s impact on the arm,
caused flexion on the springs of the SEA, absorbing the
impact. With the feedback of the rotation of the spring, the
PID controller managed to command the servo motors to
rapidly restore the arm to initial posture.
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Fig. 13 A brick of 2.57 kg was let go from a 50 cm of height over
the robot’s left arm, producing no damage. Collision is shown at 0.33s,
and the original pose is restored in less than 1s

4 Conclusion

This work introduced Dimitri, a cost-effective, open
humanoid robot conceived for studies on human-robot inter-
action, intelligent force-aware manipulation and other appli-
cations ofmechanical compliance. Regardless its restrictions,

the simplistic arrangement easily demonstrates its advan-
tage when the task demand joint compliance and safe
human-robot interaction. The results of the MTRNN exper-
iment confirmed that distinct combined patterns could be
trained and generated by using initial states of the SC units
both in closed-loop and semi-closed loop. Results also con-
firm that the intention could be manipulated in an abstract
sense, via the superior neural states trickling their effects
to the output neurons, in a top-down approach. Research
involving online learning and exploration are accomplished
safely, and in addition it provides torque response.

The torsional springs performed satisfactorily, allowing
torque sensing with manageable decline in joint speed.
A noticeable downside is the propensity for oscillatory
behaviour frequently observed on the shoulder roll joints.
This oscillations were decreased by adjusting PID gains,
with the disadvantage of decreasing the system’s dynamics.

For subsequent work we are working on increasing Dim-
itri’s capacities, including studies on bipedal walking using
the SEA equiped legs and the deisgn of an animatronic
face for human social interaction. We are also testing wrist
and end-effector designs for more practical service robotics
tasks.
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